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ABSTRACT

-I This report forms the user's guide for Version 4.0 of NPSOL, a set of Fortran subroutines
designed to minimize a smooth function subject to constraints, which may include simple bounds
on the variables, linear constraints and smooth nonlinear constraints. (NPSOL may also be used for
unconstrained, bound-constrained and linearly constrained optimization.) The user must provide
subroutines that define the objective and constraint functions and (optionally) their gradients. All
matrices are treated as dense, and hence NPSOL is not intended for large sparse problems.

NPSOL uses a sequential quadratic programming (SQP) algorithm, in which the search direc-
tion is the solution of a quadratic programming (QP) subproblem. The algorithm treats bounds,
livear constraints and nonlinear constraints separately. The Hessian of each QP subproblem is
a positive-definite quasi-Newton approximation to the Hessian of the Lagrangian function. The
steplength at each iteration is required to produce a sufficient decrease in an augmented Lagrangian
merit function. Each QP subproblem is solved using a quadr tic programming package with several

features that improve the efficiency of an SQP algorittm. 0 ,- )

t NPSOL is available from the Stanford Office of Technology Licensing, 350 Cambridge Avenue,
Suite 250, Palo Alto, California 94306, USA.

The material contained in this report is based upon research supported by the U.S. Department
of Energy Contract DE-AA03-76SF00326, PA No. DE-AS03-76ER72018; National Science Foun-
dation Grants DCR-8413211 and ECS-8312142; the Office of Naval Research Contract N00014-85-
K-0343; and the U.S. Army Research Office Contract DAAG29-84-K-0156.
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1. PURPOSE

I. PURPOSE
NPSOL is a collection of Fortran 77 subroutines designed to solve the nonlinear programming
problem: the minimization of a smooth nonlinear function subject to a set of constraints on the
variables. The problem is assumed to be stated in the following form:

NP minimize F(x)

subject to I_ ALzc <U,

where F(z) (the objective function) is a nonlinear function, A, is an m, x n constant matrix of
general constraints, and c(x) is an mN-vector of nonlinear constraint functions. (The matrix AL
and the vector c(z) may be empty.) The objective function F and the constraint functions are
assumed to be smooth, i.e., at least twice-continuously differentiable. (The method of NPSOL will
usually solve NP if there are only isolated discontinuities away from the solution).

Note that upper and lower bounds are specified for all the variables and for all the constraints.
This form allows full generality in specifying other types of constraints. In particular, the i-th
constraint may be defined as an equality by setting 1i = ui. If certain bounds are not present, the
associated elements of I or u can be set to special values that will be treated as -0c or -- oo.

If there are no nonlinear constraints in NP and F is linear or quadratic, the QPSOL or LSSOL
packages (Gill et al., 1984a, 1986a) will generally be more efficient than NPSOL. If the problem is
large and sparse, the MINOS package (Murtagh and Saunders, 1982, 1983) should be used, since
NPSOL treats all matrices as dense.

The user must supply an initial estimate of the solution to NP, and subroutines that define
F(z), c(x), and as many first partial derivatives as possible; unspecified derivatives are approxi-
mated by finite-differences.

NPSOL is based on subroutines from Version 1.0 of the LSSOL constrained linear least-squares
package; the documentation of LSSOL (Gill et al., 1986a) should be consulted in conjunction with
this report. NPSOL contains approximately 15,000 lines of ANSI (1977) Standard Fortran, of which
47% are comments.

-
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2 User's Guide for NPSOL 4.0

2. DESCRIPTION OF THE ALGORITHM
Here we briefly summarize the main features of the method of NPSOL. Where possible, explicit
reference is made to the names of variables that are parameters of subroutine NPSOL or appear in
the printed output.

At a solution of NP, some of the constraints will be active, i.e., satisfied exactly. An active
simple bound constraint implies that the corresponding variable is fixed at its bound, and hence
the variables are partitioned into fixed and free variables. Let C denote the m x n matrix of
gradients of the active general linear and nonlinear constraints. The number of fixed variables will
be denoted by nFX, with nFR (FR -- n - n%,X) the number of free variables. The subscripts "FX"
and "FR" on a vector or matrix will denote the vector or matrix composed of the components
corresponding to fixed or free variables.

A point x is a first-order Kuhn-Tucker point for NP (see, e.g., Powell, 1974) if the following
conditions hold:

(i) x is feasible;

(ii) there exist vectors and \ (the Lagrange multiplier vectors for the bound and general
constraints) such that =g-= CTA + , (1)

where g is the gradient of F evaluated at x, and j = 0 if the j-th variable is free.
(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower

bound must be non-negative, and non-positive for an inequality constraint active at
its upper bound.

Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the
rows of CF; i.e., CaZ = 0. An equivalent statement of the condition (1) in terms of Z is

Z~g'R = 0.

The vector ZTg, is termed the projected gradient of F at x. Certain additional conditions must
be satisfied in order for a first-order Kuhn-Tucker point to be a solution of NP (see, e.g., Powell,
1974).

The method of NPSOL 4.0 is a sequential quadratic programming (SQP) method. For an
overview of SQP methods, see, for example, Fletcher (1981), Gill, Murray and Wright (1981) and
Powell (1983).

The basic structure of NPSOL involves major and minor iterations. The major iterations
generate a sequence of iterates {x} that converge to X*, a first-order Kuhn-Tucker point of NP. At
a typical major iteration, the new iterate Z is defined by

X = + ap, (2)

where x is the current iterate, the non-negative scalar a is the step length, and p is the search
direction. (For simplicity, we shall always consider a typical iteration and avoid reference to the
index of the iteration.) Also associated with each major iteration are estimates of the Lagrange

multipliers and a prediction of the active set.
The search direction p in (2) is the solution of a quadratic programming subproblem of the

form
minimize g2p + lpHp

P 0" subject to < Ap 5 f,
%... A p- P
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2. DESCRIPTION OF THE ALGORITHM

where g is the gradient of F at x, the matrix H is a positive-definite quasi-Newton approximation
to the Hessian of the Lagrangian function (see Section 2.3), and AN is the Jacobian matrix of c
evaluated at x. (Finite-difference estimates may be used for g and AN; see the optional parameter

di "Derivative Level" in Section 5.2.) Let I in NP be partitioned into three sections: 1., 1, and
IN, corresponding to the bound, linear and nonlinear constraints. The vector I in (3) is similarly
partitioned, and is defined as

.t -I -1,IL=IL-AL , and !WV=IN-C,

where c is the vector of nonlinear constraints evaluated at z. The vector ii is defined in an analogous
fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from
the subproblem (3) (and similarly for the predicted active set). (The numbers of bounds, general
linear and nonlinear constraints in the QP active set are the quantities "Bnd", "Lin" and "Nln"
in the printed output of NPSOL.) In NPSOL, (3) is solved using subroutines from Version 1.0 of
the LSSOL package (Gill et al., 1986a). Since solving a quadratic program is itself an iterative
procedure, the minor iterations of NPSOL are the iterations of LSSOL. (More details about solving
the subproblem are given in Section 2.1.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let
the subscripts "FX" and "FR" refer to the predicted fixed and free variables, and let C denote the
m x n matrix of gradients of the general linear and nonlinear constraints in the predicted active
set. First, we have available the TQ factorization of C,,:

~,j C,.,Q, = (0 T), (4)

where T is a nonsingular m x m reverse-triangular matrix (i.e., tij = 0 if i + j < in), and the
non-singular nPR x nFR matrix QFR is the product of orthogonal transformations (see Gill et al.,
1984a). Second, we have the upper-triangular Cholesky factor R of the transformed and re-orderel
Hessian matrix RTR = Ha _ QTfQ, (5)

where H is the Hessian H with rows and columns permuted so that the free variables are first, and

Q is the n x n matrix

Q(QPR tF)(6)

with I,, the identity matrix of order nx. If the columns of QFR are partitioned so that

Q,-( Z Y),

the n, (n, =- nP, - m) columns of Z form a basis for the null space of CFR. The matrix Z is used
to compute the projected gradient ZTgFR at the current iterate. (The values "Nz", "Norm Gf", and
"Norm Gz" printed by NPSOL give n, and the norms of gR and ZTg,..)

A theoretical characteristic of SQP methods is that the predicted active set from the QP
subproblem (3) is identical to the correct active set in a neighborhood of z. In NPSOL, this feature

is exploited by using the QP active set from the previous iteration as a prediction of the active
set for the next QP subproblem, which leads in practice to optimality of the subproblems in only
one iteration as the solution is approached. Separate treatment of bound and linear constraints in
NPSOL also saves computation in factorizing CPR and H a.

%.



4 User's Guide for NPSOL 4.0

Once p has been computed, the major iteration proceeds by determining a steplength (Y that
produces a "sufficient decrease" in an augmented Lagrangian merit function (see Section 2.2).
Finally, the approximation to the transformed Hessian matrix H. is updated using a modified
BFGS quasi-Newton update (see Section 2.3) to incorporate new curvature information obtained
in the move from x to i.

On entry to NPSOL, an iterative procedure from the LSSOL package is executed, starting with
the user-provided initial point, to find a point that is feasible with respect to the bounds and linear
constraints (using the tolerance specified by "Linear Feasibility Tolerance"; see Section 5.2).
If no feasible point exists for the bound and linear constraints, NP has no solution and NPSOL
terminates. Otherwise, the problem functions will thereafter be evaluated only at points that are
feasible with respect to the bounds and linear constraints. The only exception involves variables
whose bounds differ by an amount comparable to the finite-difference interval (see the discussion
of "Difference Interval" in Section 5.2). In contrast to the bounds and linear constraints, it
must be emphasized that the nonlinear constraints will not generally be satisfied until an optimal

i. x point is reached.

Facilities are provided to check whether the user-provided gradients appear to be correct (see
the optional parameter "Verify" in Section 5.2). In general, the check is provided at the first

point that is feasible with respect to the linear constraints and bounds. However, the user may
request that the check be performed at the initial point.

In summary, the method of NPSOL first determines a point that satisfies the bound and linear
constraints. Thereafter, each iteration includes: (a) the solution of a quadratic programming
subproblem; (b) a linesearch with an augmented Lagrangian merit function; and (c) a quasi-
Newton update of the approximate Hessian of the Lagrangian function. These three procedures

are described in more detail in the next three subsections.

2.1. Solution of the quadratic programming subproblem

The search direction p is obtained by solving (3) using subroutines from the LSSOC package (Gill
et al., 1986a), which was specifically designed to be used within an SQP algorithm for nonlinear
programming.

The method of LSSOL is a two-phase (primal) quadratic programming method. The two

phases of the method are: finding an initial feasible point by minimizing the sum of infeasibilities
(the feasibility phase), and minimizing the quadratic objective function within the feasible region
(the optimality phase). The computations in both phases are performed by the same subroutines.
The two-phase nature of the algorithm is reflected by changing the function being minimized from
the sum of infeasibilities to the quadratic objective function.

In general, a quadratic program must be solved by iteration. Let p denote the current estimate

of the solution of (3); the new iterate p is defined by

= p + ad, (7)

where, as in (2), o is a non-negative step length and d is a search direction.
At the beginning of each iteration of LSSOL, a working set is defined of constraints (general

and bound) that are satisfied exactly. The vector d is then constructed so that the values of
constraints in the working set remain unaltered for any move along d. For a bound constraint in
the working set, this property is achieved by setting the corresponding component of d to zero,
i.e., by fixing the variable at its bound. As before, the subscripts "FX" and "FR" denote selection
of the components associated with the fixed and free variables.

.'-,-



2. DESCRIPTION OF THE ALGORITHM 5

Let C denote the submatrix of rows of

( A,
(A,)

corresponding to general constraints in the working set. The general constraints in the working
set will remain unaltered if

CFRdF, = 0, (8)

which is equivalent to defining dFR as

dPR = Zdz (9)

for some vector dz, where Z is the matrix associated with the TQ factorization (4) of CFR.
The definition of d, in (9) depends on whether the current p is feasible. If not, d, is zero except

for a component -y in the j-th position, where j and -y are chosen so that the sum of infeasibilities
is decreasing along d. (For further details, see Gill et al., 1986a.) In the feasible case, d, satisfies
the equations

.6 RTRzd z = -ZTqF,, (10)

where Rz is the Cholesky factor of ZTHFr Z and q is the gradient of the quadratic objective function
(q = g + Hp). (The vector ZTqIf is the projected gradient of the QP.) With (10), p + d is the
minimizer of the quadratic objective function subject to treating the constraints in the working
set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in
the subspace defined by the working set. During the feasibility phase, the projected gradient will
usually be zero only at a vertex (although it may vanish at non-vertices in the presence of constraint
dependencies). During the optimality phase, a zero projected gradient implies that p minimizes
the quadratic objective function when the constraints in the working set are treated as equalities.
In either case, Lagrange multipliers are computed. Given a positive constant 6 of the order of
the machine precision, the Lagrange multiplier 1j corresponding to an inequality constraint in the
working set at its upper bound is said to be optimal if pi < 6 when the j-th constraint is at its
upper bound, or if A, > -6 when the associated constraint is at its lower bound. If any multiplier is
non-optimal, the current objective function (either the true objective or the sum of infeasibilities)

, can be reduced by deleting the corresponding constraint from the working set.
If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero,

no feasible point exists. The QP algorithm will then continue iterating to determine the minimum
sum of infeasibilities. At this point, the Lagrange multiplier p, will satisfy -(1 + 6) !5 j <5 6 for
an inequality constraint at its upper bound, and -6 < lij 5 1 + 6 for an inequality at its lower
bound. The Lagrange multiplier for an equality constraint will satisfy JPL 5 1 + 6.

The choice of step length o in the QP iteration (7) is based on remaining feasible with respect
to the satisfied constraints. During the optimality phase, if p + d is feasible, o will be taken as
unity. (In this case, the projected gradient at p will be zero.) Otherwise, 0r is set to a,, the step
to the "nearest" constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to CIR: if the status of a general
constraint changes, a row of CR is altered; if a bound constraint enters or leaves the working set,
a column of C,. changes. Explicit representations are recurred of the matrices T, QFR and R, and
of the vectors QTq and QTg.

''''"-'''''S '-"- .... -e. - . -''"" % % V'.- - .. ,.-.' '' . -. '''"'""',-.'. ,-. ,. .''- '""' .-. '''X ..-...



6 User's Guide for NPSOL 4.0 4

2.2. The merit function

After computing the search direction as described in Section 2.1, each major iteration proceeds by P4
determining a steplength a in (2) that produces a "sufficient decrease" in the augmented Lagrangian
merit function

C(x, A,.s) = F(x) - Ai (c,(x) - s,) + 2 Zp,(c,(z)- s,)2 , (n) "
i i

where x, A and s vary during the linesearch. The summation terms in (11) involve only the
nonlinear constraints. The vector A is an estimate of the Lagrange multipliers for the nonlinear
constraints of NP. The non-negative slack variables {si} allow nonlinear inequality constraints to
be treated without introducing discontinuities. The solution of the QP subproblem (3) provides a
vector triple that serves as a direction of search for the three sets of variables. The non-negative
vector p of penalty parameters is initialized to zero at the beginning of the first major iteration.
Thereafter, selected components are increased whenever necessary to ensure descent for the merit
function. Thus, the sequence of norms of p (the printed quantity "Penalty"; see Section 6) is
generally non-decreasing, although each pi may be reduced a limited number of times.

The merit function (11) and its global convergence properties are described in Gill et al.
(1986b).

2.3. The quasi-Newton update IV7

The matrix H in (3) is a positive-definite quasi-Newton approximation to the Hessian of the La-
grangian function. (For a review of quasi-Newton methods, see Dennis and Schnabel, 1983.) At the
end of each major iteration, a new Hessian approximation R is defined as a rank-two modification
of H. In NPSOL, the BFGS quasi-Newton update is used:

1 HssTH+ 1 THt = H - sT--- -Hsy H, (12)

STH-s V

where s = ; - x (the change in z).
In NPSOL, H is required to be positive definite. If H is positive definite, A as defined by (12)

will be positive definite if and only if yTs is positive (see, e.g., Dennis and Mor6, 1977). Ideally, y
in (12) would be taken as yL, the change in gradient of the Lagrangian function

y. ANN-ANI (13)
where /lN denotes the QP multipliers asociated with the nonlinear constraints of the original
problem. If yTs is not sufficiently positive, an attempt is made to perform the update with a vector
y of the form

mN

V = YL + Zwi(a,(i)c,(x) - a,(x)c,(x)),
s=1

where w, > 0. If no such vector can be found, the update is performed with a scaled y,; in this
case, "M" is printed to indicate that the update was modified.

Rather than modifying H itself, the Cholesky factor of the transformed Hessian HQ (4) is

updated, where Q is the matrix from (3) associated with the active set of the QP subproblem. The
update (12) is equivalent to the following update to HQ:

HQ Hq - 1 HQsQsrHQ + 1yT y T (14)
I = HSQVQ Q

where y. QTy, and sQ = QTs. This update may be expressed as a rank-one update to R (see

Dennis and Schnabel, 1981).
Full details concerning the Hessian update are given in Gill et al. (1986c).

" -.-.-... .. .- •....-..........- . -. , - .



S. SPECIFICATION OF SUBROUTINE NPSOL 7

3. SPECIFICATION OF SUBROUTINE NPSOL
The formal specification of NPSOL is the following:

SUBROUTINE NPSOL ( N, NCLIN, NCNLN, NROWA, NROWJ, NROWR,
A, BL, BU,

ONFUN, OBJFUN,

INFORM, ITER, ISTATE,

C, CJAC, CLAMDA, OBJF, GRAD, R, X,

IW, LENIW, W, LENW )

INTEGER N, NCLIN, NCNLN,
NROWA, NROWJ, NROWR, INFORM, ITER, LENIW, LENW

dr. eINTEGER ISTATE(N+NCLIN+NCNLN), IW(LENIW)

REAL OBJF
REAL A(NROWA, *), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),

C(*), CJAC(NROWJ,*), CLAMDA(N+NCLIN+NCNLN), GRAD(N),

R(NROWR,*), X(N), W(LENW)
EXTERNAL CONFUN, OBJFUN

'p"- Note: Here and elsewhere, the specification of a parameter as REAL should be interpreted as working

precision, which may be DOUBLE PRECISION in some installations.

3.1. Formal parameters

N (Input) The number of variables in the problem, i.e., the dimension of X. (N must
be positive.)

NCLIN (Input) The number of general linear constraints in the problem. '(NCLIN may be
zero.)

NCNLN (Input) The number of nonlinear constraints in the problem. (NCNLN may be zero.)

NROWA (Input) The declared row dimension of the array A. NROWA must be at least I and
at least NCLIN.

NROWJ (Input) The declared row dimension of the array CJAC. NROWJ must be at least 1
and at least NCNLN.

NROWR (Input) The declared row dimension of the array R. NROWR must be at least N.

A (Input) A real array of declared dimension (NROWA *), where the second dimension
must be at least N. A contains the matrix A, of general linear constraints in the
problem specification NP (Section 1). The i-th row of A, i = 1 to NCLIN, contains the
coefficients of the i-th general linear constraint. If NCLIN is zero, A is not accessed
and may be dimensioned (1,1).

ItBL (Input) A real array of dimension at least N+ NCLIN+ NCNLN that contains the lower
bounds for all the constraints, in the following order (which is also observed for BU,
CLAMDA and ISTATE). The first N elements of BL contain the lower bounds on the
variables. If NCLIN > 0, the next NCLIN elements of BL contain the lower bounds for

the general linear constraints. If NCNLN > 0, the next NCNLN elements of BL contain

-.. . .



-' 8 User's Guide for NI'SOL 4.0

the lower bounds for the nonlinear constraints. In order for the prot)lem specification
to be meaningful, it is req~uired that BL(j) < BU(j) for all j. To specify a non-existent
lower bound (i.e., tj = -oc), the value used must satisfy BL(j) < -BIGBND, where
BIGBND is the value of the optional parameter Infinite Bound, whose default value
is 1010 (see Section 5.2). To specify the j-th constraint as an equality, the user must
set BL(j) = BU(j) =/5, say, where 11 < BIGBND.

BU (Input) A real array of dimension at least N+NCLIN+NCNLN that contains the upper
bounds for all the constraints, in the same order described above for BL. To specify a
non-existent upper bound (i.e., uj = oo), the value used must satisfy BU(j) 2! BIGBND.

CONFUN (User-defined subroutine) The name of a subroutine that calculates the vector
c(x) of nonlinear constraint functions and (optionally) its Jacobian for a specified
n-vector x. CONFUN must be declared as EXTERNAL in the routine that calls NPSOL.
For a detailed description of CONFUN, see Section 4.2.

OBJFUN (User-defined subroutine) The name of a subroutine that calculates the objective
function F(x) and (optionally) its gradient for a specified n-vector x. OBJFUN must
be declared as EXTERNAL in the routine that calls NPSOL. For a detailed description
of OBJFUN, see Section 4.1.

". INFORM (Output) An integer that indicates the result of NPSOL. (A short description of
,i INFORM is printed if Major Print Level > 0.) The possible values of INFORM are:

INFORM Meaning

< 0 The user has set MODE to this negative value in CONFUN or OBJFUN (see
Section 4).

0 The iterates have converged to a point X that satisfies the first-order
Kidhn-Tucker conditions to the accuracy requested by the optional pa-
rameter Optimality Tolerance (see Section 5.2), i.e., the projected gra,"
dient and activw constraint residuals are negligible at X.

1 The final iterate X satisfies the first-order Kuhn-Tucker conditions to the
accuracy requested, but the sequence of iterates has not yet converged. -

NPSOL was terminated because no further improvement could be made
in the merit function.

2 No feasible point could be found for the linear constraints and bounds.
The problem has no feasible solution. See Section 7 for further com-
ments.

3 No feasible point could be found for the nonlinear constraints. The prob-
'4 lem may have no feasible solution. See Section 7 for further comments.

4 The limiting number of iterations (determined by the optional parameter
Major Iteration Limit: see Section 5.2) has been reached.

6 X does not satisfy the first-order Kuhn-Tucker conditions, and no ir-
proved point for the merit function could be found during the final line
search.

7 The user-provided derivatives of the objective function and/or nonlinear
constraints appear to be incorrect.

9 An input parameter is invalid.

ITER (Output) The number of major iterations performed.

7.-• / ".', '/ .' ,, "'%",.'' '..""V .'' .-" ," ."- -e.- .- "- ., .N.-. " " '.-' "_-A" "- "" -"". " " "- "- ."". "" -" " '" '"-" -' • 
'
-' -" -



3. SPECIFICATION OF SUBROUTINE NPSOL 9

ISTATE (Input) An integer array of dimension at least N + NCLIN + NCNLN. ISTATE need not
be initialized if NPSOL is called with a Cold Start (the default option; see Section
5.2). The ordering of ISTATE is the same as that described above for BL, i.e., the
first N components of ISTATE refer to the upper and lower bounds on the variables,
components N + 1 through N + NCLIN refer to the upper and lower bounds on ALE,
and components N + NCLIN + 1 through N + NCLIN + NCNLN refer to the upper and
lower bounds on c(z). When a Warm Start option is chosen, the components of
ISTATE corresponding to the bounds and linear co.istraints define the initial working
set for the procedure that finds a feasible point for the linear constraints and bounds.
The active set at the conclusion of this procedure and the components of ISTATEScorresponding to nonlinear constraints then define the initial working set for the first

QP subproblem. Possible values for ISTATE(j) are

ISTATE(j) Meaning
0 The corresponding constraint is not in the initial QP working set.

1 This inequality constraint should be in the working set at its lower bound.

2 This inequality constraint should be in the working set at its upper
bound.

3 This equality constraint should be in the initial working set. This value
must not be specified unless BL(j) = BU(j). The values 1, 2 or 3 all have
the same effect when BL(j) = BU(j).

Other values of ISTATE are also acceptable. In particular, if NPSOL has been called
previously with the same values of N, NCLIN and NCNLN, ISTATE already contains sat-
isfactory values. If necessary, NPSOL will override the user's specification of ISTATE,
so that a poor choice will not cause the algorithm to fail.

(Output) If NPSOL exits with INFORM = 0 or 1, the values in the array ISTATE
correspond to the active set of the final QP subproblem, and are a prediction of th
status of the constraints at the solution of the problem. Otherwise, ISTATE indicates
the composition of the QP working set at the final iterate. The significance of each
possible value of ISTATE(j) is as follows:

ISTATE(j) Meaning

-2 This constraint violates its lower bound by more than the feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance
and Nonlinear Feasibility Tolerance in Section 5.2). This value can
occur only when no feasible point can be found for a QP subproblem.

-1 This constraint violates its upper bound by more than the appropri-
ate feasibility tolerance (see the optional parameters Linear Feasi-

A-, bility Tolerance and Nonlinear Feasibility Tolerance in Section
5.2). This value can occur only when no feasible point can be found for
a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not
in the working set.

1 This inequality constraint is included in the QP working set at its lower
bound.

2 This inequality constraint is included in the QP working set at its upper
bound.
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3 This constraint is included in the QP working set as an equality. This
value of ISTATE can occur only when BL(j) = BU(j).

C (Output) A real array of dimension at least NCNLN. If NCNLN = 0, C is not accessed,
and may then be declared to be of dimension (1), or the actual parameter may be
any convenient array. If NCNLN > 0, C contains the values of the nonlinear constraint
functions ci, i = 1 to NCNLN, at the final iterate.

CJAC (Input) A real array of dimension (NROWJ, *), where the second dimension must be
at least N. If NCNLN = 0, CJAC is not accessed, and may then be declared to be of
c ,ension (1, 1), or the actual parameter may be any convenient array.

In general, CJAC need not be initialized before the call to NPSOL. However, if Deriva-
tive Level = 3, the user may optionally set the constant elements of CJAC (see Sec-
tion 4.3). Such constant elements need not be re-assigned on subsequent calls to
CONFUN.

*(Output) If NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear con-
straint functions at the final iterate, i.e., CJAC(i,j) contains the partial derivative of
the i-th constraint function with respect to the j-th variable, i = 1 to NCNLN, j 1
to N. (See the discussion of CJAC under CONFUN in Section 4.2.)

CLAMDA (Input) A real array of dimension at least N + NCLIN + NCNLN. CLAMDA need not be
initialized if NPSOL is called with the (default) Cold Start option. With the Warm
Start option, CLAMDA must contain a multiplier estimate for each nonlinear constraint
with a sign that matches the status of the constraint specified by the 1STATE array
(as above). The ordering of CLAMDA is the same as that given above for BL. If
the j-th constraint is defined as "inactive" by the initial value of the ISTATE array,
CLAMDA(j) should be zero; if the j-th constraint is an inequality active at its lower
bound, CLAMDA(J) should be non-negative; if the j-th constraint is an iAequality active
at its upper bound, CLAMDA(j) should be non-positive.

(Output) CLAMDA gives the QP multipliers from the last QP subproblem. CLAMDA(j)
should be non-negative if ISTATE(j) = 1 and non-positive if ISTATE(j) = 2.

OBJF (Output) The value of the objective function F(x) at the final iterate.

OBJGRD (Output) A real array of dimension at least N that contains the objective gradient
(or its finite-difference approximation) at the final iterate.

R (Input) A real array of declared dimension (NROWR, *), where the second dimension
must be at least N. R need not be initialized if NPSOL is called with a Cold Start
option (the default), and will be taken as the identity. With a Warm Start, R must
contain the upper-triangular Cholesky factor of the initial approximation of the Hes-
sian of the Lagrangian function, with the variables in the natural order. Elements not
in the upper-triangular part of R are assumed to be zero and need not be assigned.

(Output) If Hessian = No (the default; see Section 5.2), R contains the upper-
triangular Cholesky factor of QTkQ, an estimate of the transformed and re-ordered
Hessian of the Lagrangian at X (see (5) in Section 2). If Hessian = Yes, R contains
the upper-triangular Cholesky factor of H, the approximate (untransformed) Hessian
of the Lagrangian, with the variables in the natural order.

%I
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x (Input) A real array of dimension at least N. X must contain an initial estimate of
the solution.

(Output) X contains the final estimate of the solution.

3.2. Workspace parameters

IW (Input) An integer array of dimension LENIW that provides integer workspace for
NPSOL.

LENIW (Input) The dimension of IW. LENIW must be at least 3 N + NCLIN + 2 NCNLN.

W (Input) A real array of dimension LENW that provides real workspace for NPSOL.

LENW (Input) The dimension of W. If there are no general linear constraints and no nonlin-
ear constraints (i.e., NCLIN = 0 and NCNLN = 0), LENW must be at least 20N. If there are
no nonlinear constraints (i.e., NCNLN = 0), LENW must be at least 2 N2 + 20 N + 11 NCLIN.
Otherwise, LENW must be at least 2 N2 + N*NCLIN + 2N*NCNLN + 20N + IINCLIN +
21 NCNLN.

If Major Print Level > 0, the required amounts of workspace are printed. As an alternative
to computing LENIW and LENW from the formulas given above, the user may prefer to obtain
appropriate values from the output of a preliminary run with a positive value of Maj or Print
Level and LENIW and LENW set to 1. (NPSOL will then terminate with INFORM = 9.)

.

. . . . .
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4. USER-SUPPLIED SUBROUTINES
The user must provide subroutines that define the objective function and nonlinear constraints.
The objective function is defined by subroutine OBJFUN, and the nonlinear constraints atre defined
by subroutine CONFUN. On every call, these subroutines must return appropriate values of the
objective and nonlinear constraints in OBJF and C. The user should also provide the available
partial derivatives. Any unspecified derivatives are approximated by finite differences; see Section
5.2 for a discussion of the optional parameter Derivative Level. Just before either OBJFUN or
CONFUN is called, each element of the current gradient array OBJGRD or CJAC is initialized to a
special value. On exit, any element that retains the given value is estimated by finite differences.

For maximum reliability, it is preferable for the user to provide all partial derivatives (see
Chapter 8 of Gill, Murray and Wright, 1981, for a detailed discussion). If all gradients cannot be
provided, it is similarly advisable to provide as many as possible. While developing the subroutines
OBJFUN and CONFUN, the Verify parameter (see Section 5.2) should be used to check the calculation
of any known gradients.

4.1. Subroutine OBJFUN

This subroutine must calculate the objective function F(x) and (optionally) the gradient g(z).
The specification of OBJFUN is

SUBROUTINE OBJFUN( MODE, N, X, OBJF, OBJGRD, NSTATE )
INTEGER MODE, N, NSTATE
REAL OBJF
REAL X(N), OBJGRD(N)

Parameters:

MODE (Input) This parameter is set by NPSOL to indicate the values that must be assigned
during each call of OBJFUN. MODE will always have the value 2 if all components of the
objective gradient are specified by the user, i.e., if Derivative Level is either 1 or 3
(see Section 5.2). If some gradient elements are unspecified, NPSOL will call OBJFUN
with MODE = 0, 1 or 2.

If MODE = 2, compute OBJF and the available components of OBJGRD.

N If MODE = 1, compute all available components of OBJGRD; OBJF is not required.

If MODE - 0, only OBJF needs to be computed; OBJGRD is ignored.

(Output) If for some reason you wish to terminate the solution of the current prob-
lem, set MODE to a negative value, e.g., -1.

N (Input) The number of variables, i.e., the dimension of X. The actual parameter N
will always be the same Fortran variable as that input to NPSOL, and must not be
altered by OBJFUN.

x (Input) An array of dimension at least N containing the values of the variables x for
which F must be evaluated. The array X must not be altered by OBJFUN.

'OBJF (Output) The computed. value of the objective function F(z).

OBJGRD (Output) The available components of the gradient vector g(x), i.e., OBJGRD(j) con-
tains the partial derivative OF/Oxi .

NSTATE (Input) If NSTATE 1, NPSOL is calling OBJFUN for the first time. This parameter
setting allows the user to save computation time if certain data must be read or

% W
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calculated only once. If there are nonlinear constraints, the first call to CONFUN will
occur before the first call to OBJFUN.

4.2. Subroutine CONFUN

This subroutine must compute the nonlinear constraint functions c(x) and (optionally) their gradi-
ents. (A dummy subroutine CONFUN must be provided if all constraints are linear.) The i-th row of
the Jacobian matrix CJAC is the vector Vc- (=c 1C/OzI, Oc/Oz 2 ,... ,Dc 1 Dz)T. The specification
of CONFUN is

SUBROUTINE CONFUN( MODE, NCNLN, N, NROWJ,
NEEDC, X, C, CJAC, NSTATE )

INTEGER MODE, NCNLN, N, NROWJ

INTEGER NEEDC(*)
REAL X(N), C(*), CJAC(NROWJ,*)

Parameters:

MODE (Input) This parameter is set by NPSOL to indicate the values that must be assigned
during each call of CONFUN. MODE will always have the value 2 if all elements of the
Jacobian are available, i.e., if Derivative Level is either 2 or 3 (see Section 5.2).
If some elements of CJAC are unspecified, NPSOL will call CONFUN with MODE = 0, 1,
or 2:

If MODE = 2, only the elements of C corresponding to positive values of NEEDC need to
be set (and similarly for the available components of the rows of CJAC).

If MODE = 1, the available components of the rows of CJAC corresponding to positive
values in NEEDC must be set. Other rows of CJAC and the array C will be
ignored.

If MODE = 0, the components of C corresponding to positive values in NEEDC must be
set. Other components and the array CJAC are ignored.

(Output) If for some reason you wish to terminate the solution of the current prob-
lem, set MODE to a negative value, e.g., -1.

NCNLN (Input) The number of nonlinear constraints, i.e., the dimension of C. The actual
parameter NCNLN is the same Fortran variable as that input to NPSOL, and must not
be altered by CONFUN.

N (Input) The number of variables, i.e., the dimension of X. The actual parameter N
is the same Fortran variable as that input to NPSOL, and must not be altered by
CONFUN.

NROWJ (Input) The leading dimension of the array CJAC. NROWJ must be at least 1 and at
, , least NCNLN.

NEEDC (Input) An array that specifies the indices of the elements of C or CJAC that must
be evaluated by CONFUN. NEEDC need not be checked if the user always provides all
values, since the unneeded values are ignored.

X (Input) An array of dimension at least N containing the values of the variables X for
which the constraints must be evaluated. X must not be altered by CONFUN.

C (Output) An array of dimension at least NCNLN that contains the appropriate values
of the nonlinear constraints. If NEEDC(i) > 0 and MODE = 0 or 2, the value of the i-th
constraint at X must be stored in C(i). (The other components of C are ignored.)

%i
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CJAC (Output) A real array of declared dimension (NROWJ, *), where the second dimen-
sion must be at least N, containing the appropriate elements of the Jacobian matrix
evaluated at X. (See the discussion of MODE and CJAC above.)

The parameter NSTATE has the same meaning as for OBJFUN.
N,

4.3. Constant Jacobian elements

If all constraint gradients (Jacobian elements) are known (i.e., Derivative Level = 2 or 3; see
Section 5.2), any constant elements may be assigned to CJAC one time only at the start of the
optimization. An element of CJAC that is not subsequently assigned in CONFUN will retain its initial
value throughout. Constant elements may be loaded into CJAC either before the call to NPSOL
or during the the first call to CONFUN (signalled by the value NSTATE = 1). The ability to preload
constants is useful when many Jacobian elements are identically zero, in which case CJAC may be
initialized to zero and non-zero elements may be reset by CONFUN.

Note that constant nonzero elements do affect the values of the constraints. Thus, if CJAC(ij)
is set to a constant value, it need not be reset in subsequent calls to CONFUN, but the value
CJAC(i,j)*X(j) must nonetheless be added to C(i).

It must be emphasized that, if Derivative Level < 2, unassigned elements of CJAC are not
treated as constant; they are estimated by finite differences, at non-trivial expense. If the user does
not supply a value for Difference Interval (see Section 5.2), an interval for each component of x
is computed automatically at the start of the optimization. The automatic procedure can usually
identify constant elements of CJAC, which are then computed once only by finite differences.

_-
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5. OPTIONAL INPUT PARAMETERS
Several optional parameters in NPSOL define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal parameters of NPSOL, these optional parameters
have associated default values (see Section 5.2) that are appropriate for most problems. Therefore,

% the user needs to specify only those optional parameters whose values are to be different from their
default values. The remainder of this section can be skipped by users who wish to use the default
values for all optional parameters. A complete list of optional parameters and their default values
is given in Section 5.3.

Each optional parameter is defined by a single character string of up to 72 characters, including
one or more items. The items associated with a given option must be separated by spaces or equal
signs (=). Alphabetic characters may be upper or lower case. The string

Print level = 5

is an example of an optional parameter.
For each option, the string contains the following items.

1. The keyword (required for all options).
2. A phrase (one or two words) that qualifies the keyword (only for some options).
3. A number that specifies either an INTEGER or a REAL value (only for some options).

Such numbers may be up to 16 contiguous characters in Fortran 77's I, F, E or D
formats, terminated by a space.

Blank strings and comments are ignored and may be used to improve readability. A comment begins
Nwith an asterisk (*) and all subsequent characters are ignored. If the string is not a comment and

is not recognized, a warning message is printed on the specified output device (see Section 8.5).
Synonyms are recognised for some of the keywords, and abbreviations may be used.

* . The following are examples of valid option strings for NPSOL:

NOLIST
warm start
COLD START
Verify Constraint gradients
Start OBJECTIVE check at variable 9
Stop constraint check at variable = 20 * The '' is optional
Linear Feasibility tolerance i.OE-8 * for IBM in double precision.
CRASH TOLERANCE = .002
* This string will be completely ignored.
Hessian Yes

Iteration limit 100

5.1. Specification of the optional parameters

.' .Optional parameters may be specified in two ways, as follows.

, Using subroutine NPFILE and an external file

The subroutine NPFILE provided with the NPSOL package will read options from an external

options file, and should be called before a call to NPSOL. Each line of the options file defines a
single optional parameter. The file must begin with Begin and end with End. (An options file
consisting only of these two lines corresponds to supplying no options.)
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The specification of NPFILE is

SUBROUTINE NPFILE( IOPTNS, INFORM )
INTEGER IOPTNS, INFORM

IOPTNS must be the unit number of the options file, in the range [0, 99], and is unchanged on exit
from NPFILE. INFORM need not be set on entry. On return, INFORM will be 0 if the file is a valid
options file and IOPTNS is in the correct range. INFORM will be set to 1 if IOPTNS is out of range,
and will be set to 2 if the file does not begin with Begin or end with End.

An example of a valid options file is

Begin
Print level = 5
Verify Objective Gradients

End

The call
CALL NPFILE( 5, INFORM )

will read an options file on unit 5.

* Using subroutine NPOPTN

The second method of setting the optional parameters is through a series of calls to the subroutine
NPOPTN provided with the NPSOL package. The specification of NPOPTN is

SUBROUTINE NPOPTN( STRING )
CHARACTER* (*) STRING

STRING must be a single valid option string (see above), and will be unchanged on exit. NPOPTN
must be called once for every optional parameter to be set. An example of a call to NPOPTN is

CALL NPOPTN( 'Print level = 5' )

e Use of the Nolist and Defaults option

In general, each user-specified optional parameter is printed as it is read or defined. By using the
special parameter Nolist, the user may suppress this printing for a given call of NPSOL. To take
effect, Nolist must be the first parameter specified in the options file; for example

Begin
Nolist
Verify Objective Gradients

End ,

Alternatively, the first call to NPOPTN, before or after a call to NPSOL, must be

CALL NPOPTN( 'Nolist' ).

All parameters not specified by the user are automatically set to their default values. Any
optional parameters that are set by the user are not altered by NPSOL, and hence changes to the

U
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options are cumulative. For example, calling NPOPTN( 'Print level = 5' ) sets the print level
to 5 for all subsequent calls to NPSOL until it is reset by the user. The only exception to this
rule is permitted by the special optional parameter Defaults, whose effect is to reset al optional
parameters to their default values (see Section 5.3). For example, in the following situation

CALL NPSOL ( ... )
C

CALL NPOPTN( 'Print level 5' )
CALL NPOPTN( 'Iteration limit = 100'
CALL NPSOL ( ... )

C
CALL NPOPTN( 'Defaults' )
CALL NPSOL ( ... )

the first and last runs of NPSOL will occur with the default parameter settings. However, in the
second run, the print level and iteration limit are altered.

5.2. Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the
keyword, any essential optional qualifiers, the default value, and the definition. The minimum
valid abbreviation of each keyword is underlined. If no characters of an optional qualifier are
underlined, the qualifer may be omitted. The letter a denotes a phrase (character string) that
qualifies an option. The letters i and r denote INTEGER and REAL values required with certain
options. The number e is a generic notation for maclune precision, and c,, denotes the relative
precision of the objective function (the optional parameter Function Precision; see below).

Central Difference Interval r Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not
sufficiently accurate, the value of r is used as the difference interval for every component of z.
The use of finite-differences is discussed further below under the optional parameter Difference
Interval.

Cold Start Default = Cold Start
Warm Start

This option controls the specification of the initial working set in both the procedure for finding
a feasible point for the linear constraints and bounds, and in the first QP subproblem thereafter.
With a Cold Start, the first working set is chosen by NPSOL based on the values of the variables
and constraints at the initial point. Broadly speaking, the initial working set will include equality
constraints and bounds or inequality constraints that violate or "nearly" satisfy their bounds
(within Crash Tolerance; see below). With a Warm Start, the user must set the ISTATE array
and define CLAMDA and R as discussed in Section 3. ISTATE values associated with bounds and
linear constraints determine the initial working set of the procedure to find a feasible point with
respect to the bounds and linear constraints. ISTATE values associated with nonlinear constraints
determine the initial working set of the first QP subproblem after such a feasible point has been
found. NPSOL will override the user's specification of ISTATE if necessary, so that a poor choice of
the working set will not cause a fatal error. A warm start will be advantageous if a good estimate of
the initial working set is available-for example, when NPSOL is called repeatedly to solve related

*. problems.

'WI
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Crash Tolerance r Default = .01

This value is used in conjunction with the optional parameter Cold start (the default value).
When making a cold start, the QP algorithm in NPSOL must select an initial working :et. When

%, r > 0, the initial working set will include (if possible) bounds or general inequality constraints that
lie within r of their bounds. In particular, a constraiht of the form aJ > I will be included in the
initial working set if Jate - l1 <_ r(1 + I1). If r < 0 or r > 1, the default value is used.

Derivative Level j Default = 3

This parameter indicates which derivatives are provided by the user in subroutines OBJFUN and
CONFUN. The possible choices for i are the following.

M Meaning

3 All objective and constraint gradients are provided by the user.

2 All of the Jacobian is provided, but some components of the objective gradient are
not specified by the user.

1 All elements of the objective gradient are known, but some elements of the Jacobian
matrix are not specified by the user.

0 Some elements of both the objective gradient and the Jacobian matrix are not specified

by the user.

.The value i = 3 should be used whenever possible, since NPSOL is more reliable and will usually
be more efficient when all derivatives are exact.

If i = 0 or 2, NPSOL will estimate the unspecified components of the objective gradient,
using finite differences. The computation of finite-difference approximations usually increases the
total run-time, since a call to OBJFUN is required for each unspecified element. Furthermore, less
accuracy can be attained in the solution (see Chapter 8 of Gill, Murray and Wright, 1981, for a
discussion of limiting accuracy).

If i = 0 or 1, NPSOL will approximate unspecified elements of the Jacobian. One call to
CONFUN is needed for each variable for which partial derivatives are not available. For example, if

- the Jacobian has the form

where "*" indicates an element provided by the user and "?" indicates an unspecified element,
NPSOL will call CONFUN twice: once to estimate the missing element in column 2, and again to
estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require
no calls to CONFUN.)

At times, central differences are used rather than forward differences, in which case twice as
many calls to OBJFUN and CONFUN are needed. (The switch to central differences is not under the
user's control.)

- Difference Interval r Default values are computed

This option defines an interval used to estimate gradients by finite differences in the following
circumstances:

1. For verifying the objective and/or constraint gradients (see the description of Verify, below).
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2. For estimating unspecified elements of the objective gradient or the Jacobian matrix.

In general, a derivative with respect to the j-th variable is approximated using the interval 6j, where

bj = r(l + Ij I), with i the first point feasible with respect to the bounds and linear constraints. If
the functions are well scaled, the resulting derivative approximation should be accurate to 0(r). See

Gill, Murray ai,d Wright (1981) for a discussion of the accuracy in finite-difference approximations.

If a difference interval is not specified by the user, a finite-difference interval will be computed

automatically for each variable by a procedure that requires up to six calls of CONFUN and OBJFUN
for each component. This option is recommended if the function is badly scaled or the user wishes

to have NPSOL determine constant elements in the objective and constraint gradients (see the
descriptions of CONFUN and OBJFUN in Section 4).

Feasibility Tolerance r Default =VI

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear constraints
at a "feasible" point; i.e., a constraint is considered satisfied if its violation does not exceed r.

If r < 0, the default value is used. Using this keyword sets both optional parameters Linear
Feasibility Tolerance and Nonlinear Feasibility Tolerance to r. (Additional details are

given below under the descriptions of these parameters.)

Function Precision r Default = e0.9

This parameter defines cR, which is intended to be a measure of the accuracy with which the

problem functions F and c can be computed. The value of c, should reflect the relative precision
of 1+ IF(x)I; i.e., cR acts as a relative precision when F is large, and as an absolute precision when

SF is small. For example, if F(z) is typically of order 1000 and the first six significant digits are
known to be correct, an appropriate value for c, would be 1.OE-6. In contrast, if F(x) is typically

of order 10 - 4 and the first six significant digits are known to be correct, an appropriate value for
eR would be I.OE-10. The choice of eR can be quite complicated for badly scaled problems; see

Chapter 8 of Gill, Murray and Wright (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However4

when the accuracy of the computed function values is known to be significantly worse than full
precision, the value of cR should be large enough so that NPSOL will not attempt to distinguish

between function values that differ by less than the error inherent in the calculation.

Hessian No Default = No

Hessian Yes

This option controls the contents of the upper-triangular matrix R (see Section 3). NPSOL works

exclusively with the transformed and re-ordered Hessian HQ (5), and hence extra computation

is required to form the Hessian itself. If Hessian = No, R contains the Cholesky factor of the
transformed and re-ordered Hessian. If Hessian = Yes, the Cholesky factor of the approximate

Hessian itself is formed and stored in R. The user should select Hessian = Yes if a warm start
-p will be used for the next call to NPSOL.

Infinite Bound Size r Default = 1010

If r > 0, r defines the "infinite" bound BIGBND in the definition of the problem constraints. Any

upper bound greater than or equal to BIGBND will be regarded as plus infinity (and similarly for a

lower bound less than or equal to -BIGBND). If r < 0, the default value is used.

Infinite Step Size r Default = max(BIGBND, 1010)

If r > 0, r specifies the magnitude of the change in variables that is treated as a step to an

unbounded solution. If the change in z during an iteration would exceed the value of Infinite
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Step, the objective function is considered to be unbounded below in the feasible region. If r < 0,
the default value is used.44

Iteration Limit i Default = max(50,3(n + mL) + lOmN)

See Major Iteration Limit below.

Linear Feasibility Tolerance r1 Default = VE_
Nonlinear Feasibility Tolerance r2 Default = VIC.
The scalars r, and r2 define the maximum acceptable absolute violations in linear and nonlinear
constraints at a "feasible" point; i.e., a linear constraint is considered satisfied if its violation does
not exceed rl, and similarly for a nonlinear constraint and r2. The default values are used if r, or
r 2 is non-positive.

On entry to NPSOL, an iterative procedure is executed in order to find a point that satisfies the
linear constraint and bounds on the variables to within the tolerance rl. All subsequent iterates
will satisfy the linear constraints to within the same tolerance (unless r, is comparable to the
finite-difference interval).

For nonlinear constraints, the feasibility tolerance r2 defines the largest constraint violation
that is acceptable at an optimal point. Since nonlinear constraints are generally not satisfied
until the final iterate, the value of Nonlinear Feasibility Tolerance acts as a partial termi-
nation criterion for the iterative sequence generated by NPSOL (see the discussion of Optimality
Tolerance).

These tolerances should reflect the precision of the corresponding constraints. For example,
if the variables and the coefficients in the linear constraints are of order unity, and the latter are
correct to about 6 decimal digits, it would be appropriate to specify r, as 10- .

Linesearch Tolerance r Default = 0.9

The value r (0 < r < 1) controls the accuracy with which the step a taken during each iteration
approximates a minimum of the merit function along the search direction (the smaller the value
of r, the more accurate the linesearch). The default value r = 0.9 requests an inaccurate search,
and is appropriate for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is
desirable to reduce the number of major iterations-for example, if the objective function is cheap
to evaluate, or if a substantial number of gradients are unspecified.

a4jor Iteration Limit i Default max(50,3(n + m) + lOrN)

Iteration Limit

iters
Itns

The value of i specifies the maximum number of major iterations allowed before termination.
%,-' Setting i -= 0 and Major Print Level > 0 means that the workspace needed will be computed

and printed, but no iterations will be performed.

jor Print Level i Default = 10
Print Level

The value of i controls the amount of printout produced by the major iterations of NPSOL. (See
IV. also Minor Print Level, below). The levels of printing available are indicated below.

' ' , , . - ',, , - ' , , ,I 
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i Output

0 No output.

1 The final solution only.

5 One line of output for each majoi iteration (no printout of the final solution).

> 10 The final solution and one line of output for each iteration.

> 20 At each major iteration, the objective function, the Euclidean norm of thenonlinear constraint violations, the values of the nonlinear constraints (the
array c), the values of the linear constraints (the array ALx), and the current
values of the variables (the array x).

> 30 At each major iteration, the diagonal elements of the matrix T associated with
the TQ factorization (4) of the QP working set, and the diagonal elements of
R, the triangular factor of the transformed and re-ordered Hessian (5).

Minor Iteration Limit i Default = max(50,3(n + in,, + i))

The value of i specifies the maximum number of iterations for the optimality phase of each QP
subproblem.

Minor Print Level i Default = 0

*The value of i controls the amount of printout produced by the minor iterations of NPSOL, i.e., the
iterations of the quadratic programming algorithm. (See also Major Print Level, above.) The
following levels of printing are available.

i Output

0 No output.

1 The final QP solution.

5 One line of output for each minor iteration (no printout of the final QP solu-
tion).

> 10 The final QP solution and one brief line of output for each minor iteration.

> 20 At each minor iteration, the current estimates of the QP multipliers, the current
estimate of the QP search direction, the QP constraint values, and the status

II of each QP constraint.

> 30 At each minor iteration, the diagonal elements of the matrix T associated with
the TQ factorization (4) of the QP working set, and the diagonal elements of
the Cholesky factor R of the transformed Hessian (5).

Nonlinear Feasibility Tolerance r Default = v

See Linear Feasibility Tolerance, above.
.0.8

Optimality Tolerance r Default = 48

hThe parameter r (CR < r < 1) specifies the accuracy to which the user wishes the final iterate to
approximate a solution of the problem. Broadly speaking, r indicates the number of correct figures
desired in the objective function at the solution. For example, if r is 10- 6 and NPSOL terminates
successfully, the final value of F should have approximately six correct figures.

[.i
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NPSOL will terminate successfully if the iterative sequence of x-values is judged to have con-
wrgcd and the final Ioint satisfies the first-order Kuhn-Tucker conditions (see Section 2). The
sequence of iterates is considered to have converged at x if

alpl < v'/(1 + II OD) (15a)

where p is the search direction and a the step length from (2). An iterate is considered to satisfy
the first-order cond~itions for a minimum if

IIZTg :.II _ vr(1 + max(1 + IF(x)l, IIgVRII)) (15b)

and

S!resjI _< ftol for all j, (15c)

where ZTgR is the projected gradient (see Section 2), gF is the gradient of F(x) with respect
to the free variables, resj is the violation of the j-th active nonlinear constraint, and ftol is the
Nonlinear Feasibility Tolerance.

Start Objective Check At Variable k Default = 1
Start Constraint Check At Variable k Default = 1
Stop Objective Check At Variable I Default = n

Stop Constraint Check At Variable I Default = n

These keywords take effect only if Verify level > 0 (see below). They may be used to control
the verification of gradient elements computed by subroutines OBJFUN and CONFUN. For example,
if the first 30 components of the objective gradient appeared to be correct in an earlier run, so
that only component 31 remains questionable, it is reasonable to specify Start Objective Check
At Column 31. If the first 30 variables appear linearly in the objective, so that the corresponding
gradient elements are constant, the above choice would also be appropriate.

Verify Level Default = 0

Verify No
Verify Level -1

Verify Level 0

Verify Objective Gradients

Verify Level 1

Verify Constraint Gradients
Verify Level 2

_erify
Verify Yes
Verify Gradients
Verify Level 3

These keywords refer to finite-difference checks on the gradient elements computed by the user-
provided subroutines OBJFUN and CONFUN. (Unspecified gradient components are not checked.) It
is possible to specify Verify Levels 0-3 in several ways, as indicated above. For example, the

nonlinear objective gradient (if any) will be verified if either Verify Objective or Verify Level

- . . . . ,..- . .-
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1 is specified. Similarly, the objective and the constraint gradients will be verified if Verify Yes
or Verify Level 3 or Verify is specified.

If 0 < i < 3, gradients will be verified at the first point that satisfies the linear constraints and
bounds. If i = 0, only a "cheap" test will be performed, requiring one call to OBJFUN and one call
to CONFUN. If < i < 3, a more reliable (but more expensive) check will be made on individual
gradient components, within the ranges specified by the Start and Stop keywords described above.
A result of the form "OK" or "BAD?" is printed by NPSOL to indicate whether or not each component
appears to be correct.

If 10 < i < 13, the action is the same as for i - 10, except that it will take place at the

user-specified initial value of x.

We suggest that Verify Level 3 be specified whenever a new function routine is being de-
veloped.

15.3. Optional parameter checklist and default values

For easy reference, the following sample NPOPTN list shows all valid keywords and their default
values. The default options Function Precision, Linear Feasibility Tolerance, Nonlinear

KFeasibility Tolerance and Optimality Tolerance depend upon c, the relative precision of the
machine being used. The values given here correspond to double precision arithmetic on IBM

360 and 370 systems and their successors (e ; 2.22 x 101). Similar values would apply to any
machine having about 16 decimal digits of precision.

* List of optional parameters.

Central Difference Interval ?* Computed autoniatically
Cold Start *
Crash Tolerance .01 ,
Derivative Level 3 *

Difference Interval ?* Computed automatically
Function Precision 8.2E-15 * 0.9

Hessian No *
Infinite Bound i.OE+10 * Plus infinity
Infinite Step I.OE+10 *
Linear Feasibility Tolerance 1.5E-8 *V

Linesearch Tolerance 0.9 *

Major Iteration Limit 50 * or 3(n + m,) + 10m,
Major Print Level 10 *
Minor Iteration Limit 50 * or 3(n + m, + mN)
Minor Print Level 0 *
Nonlinear Feasibility Tolerance 1.5E-8 * ve
Optimality Tolerance 5.4E-12 * e0.8

Start Objective Check I *
Start Constraint Check I *
Stop Objective Check ? * n
Stop Constraint Check ? * n

Verify Level 0 * Cheap test

i%
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6. DESCRIPTION OF THE PRINTED OUTPUT
The level of printed output from NPSOL is controlled by the user (see the descripti.-iti of Major
Print Level and Minor Print Level in Section 5.2). If Minor Print Level > (), output is
obtained from the subroutines that solve the QP subproblem. For a detailed description of this

*-. information the reader should refer to the user's guide for LSSOL (Gill et aI., 1986a).
When Major Print Level > 5, the following line of output is produced at every major

iteration of NPSOL. In all cases, the values of the quantities printed are those in effect on completion
of the given iteration.

Itn is the iteration count.

ItQP is the sum of the iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, ItQP will be I in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near
the solution (see Section 2).

Note that ItqP may be greater than the Minor Iteration Limit if some it-
erations are required for the feasibility phase.

Step is the step a taken along the computed search direction. On reasonably well-
behaved problems, the unit step will be taken as the solution is approached.

Nfun is the cumulative number of evaluations of the objective function needed for
the linesearch. Evaluations needed for the estimation of the gradients by finite

'. differences are not included. Nfun is printed as a guide to the amount of work

required for the linesearch.

Merit is the value of the augmented Lagrangian merit function (11) at the current
iterate. This function will decrease at each iteration unless it was necessary
to increase the penalty parameters (see Section 2.2). As the solution is ap-
proached, Merit will converge to the value of the objective function at the

solution.

If the QP subproblem does not have a feasible point (signified by "I" at the
end of the current output line), the merit function is a large multiple of the
constraint violations, weighted by the penalty parameters. During a sequence
of major iterations with infeasible subproblems, the sequence of Merit values
will decrease monotonically until either a feasible subproblem is obtained or
NPSOL terminates with INFORM = 3 (no feasible point could bc found for the
nonlinear constraints).

If no nonlinear constraints are present (i.e., NCNLN = 0), this entry contains
Objective, the value of the objective function F(z). The objective function
will decrease monotonically to its optimal value when there are no nonlinear I
constraints.

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted active set.

Nln is the number of nonlinear constraints in the predicted active set (not printed
• ,'if NCNLN is zero).

Nz is the number of columns of Z (see Section 2.1). The value of Nz is the number
of variables minus the number of constraints in the predicted active set; i.e.,
Nz = N - (Bnd + Lin + Nln).

a-91--~*.,;,, - ~
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Norm Gf is the Euclidean norm of gF,, the gradient of the objective function with respect
to the free variables, i.e., variables not currently held at a bound.

Norm Gz is IIZTg,.R , the Euclidean norm of the projected gradient (see Section 2.1).
Norm Gz will be approximately zero in the neighborhood of a solution.

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond Hz is a lower bound on the condition number of the projected Hessian approxima-
tion H, (H_ = ZTHSZ == RTRz; see (5) and (10) in Section 2). The larger
this number, the more difficult the problem.

Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.

Norm C is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if NCNLN is zero). Norm C will be approximately
zero in the neighborhood of a solution.

Penalty is the Euclidean norm of the vector of penalty parameters used in the aug-
mented Lagrangian merit function (not printed if NCNLN is zero).

Cony is a three-letter indication of the status of the three convergence tests (15a)-
(15c) defined in the description of the optional parameter Optimality Toler-
ance in Section 5. Each letter is "T" if the test is satisfied, and "F" otherwise.
The three tests indicate whether: (a) the sequence of iterates has converged;
(b) the projected gradient (Norm Gz) is sufficiently small; and (c) the norm of
the residuals of constraints in the predicted active set (Norm C) is small enough.

If any of these indicators is "F" when NPSOL terminates with INFORM = 0, the
user should check the solution carefully.

M is printed if the quasi-Newton update was modified to ensure that the Hessian
approximation is positive-definite (see Section 2.3).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective
and constraint gradients. If the value of Step is zero, the switch to central
differences was made because no lower point could be found in the linesearch.
(In this case, the QP subproblem is re-solved with the central-difference gra-

. dient and Jacobian.) If the value of Step is non-zero, central differences were
computed because Norm Gz and Norm C imply that X is close to a Kuhn-Tucker
point.

When Major Print Level = 1 or Major Print Level > 10, the summary printout at the
end of execution of NPSOL includes a listing of the status of every variable and constraint. Note
that default names are assigned to all variables and constraints.

The following describes the printout for each variable.

Variable gives the name (VARBL) and index j (j = 1 to N) of the variable.

State gives the state of the variable in the predicted active set (FR if neither bound is
in the active set, EQ if a fixed variable, LL if on its lower bound, UL if on its upper
bound). If the variable is predicted to lie outside its upper or lower bound by
more than the feasibility tolerance, State will be "++" or "--" respectively.
(The latter situation can occur only when there is no feasible point for the

bounds and linear constraints.)
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Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable. ("None" indicates that BL(j) <
-BIGBND.)

Upper bound is the upper bound specified for the variable. ("None" indicates that BU(j) >
BIGBND.)

Lagr multiplier is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if State is FR. If X is optimal, the multiplier should be non-negative m
if State is LL, and non-positive if State is UL.

Residual is the difference between the variable "Value" and the nearer of its bounds
BL(3) and BU(j).

The printout for general constraints is the same as for variables, except for the following:

Linear constr is the name (LNCON) and index i (i = 1 to NCLIN) of a linear constraint. .3

Nonlnr constr is the name (NLCON) and index i (i = 1 to NCNLN) of a nonlinear constraint.

"pi
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7. INTERPRETATION OF THE RESULTS

* The input data for NPSOL should always be checked (even if NPSOL terminates with the value
INFORM = 0!). Two common sources of error are uninitialized variables and incorrect gradients,
which may cause underflow or overflow on some machines. The user should check that all compo-

nents of A, BL, BU and X are defined on entry to NPSOL, and that OBJFUN and CONFUN compute all
relevant components of OBJGRD, C and CJAC.

In the following, we list the different ways in which NPSOL is terminated and discuss what
further action may be necessary.

STermination Discussion and Recommended Action

Underfiow A single underflow will always occur if machine constants are computed automat-
ically (as in the distributed version of NPSOL; see Section 8). Other floating-point
underflows may occur occasionally, but can usually be ignored.

" Overflow If the printed output before the overflow error contains a warning about seri-
ous ill-conditioning in the working set when adding the j-th constraint, it may

'K be possible to avoid the difficulty by increasing the magnitude of the optional
parameter Linear Feasibility Tolerance or Nonlinear Feasibility Toler-
ance, and rerunning the program. If the message recurs even after this change, the
offending linearly dependent constraint (with index 'J") must be removed from
the problem. If overflow occurs in one of the user-supplied routines (e.g., if the
nonlinear functions involve exponentials or singularities), it may help to specify
tighter bounds for some of the variables (i.e., reduce the gap between appropriate
tj and iij). If overflow continues to occur for no apparent reason, contact the
authors at Stanford University.

INFORM = 0 The iterates have converged to a point X that satisfies the first-order Kuhn-Tucker
conditions to the accuracy requested by the optional parameter Optimality tol-
erance (see Section 5.2), i.e., the projected gradient and active constraint residuals
are negligible at X.

The user should check whether the following four conditions are satisfied: (I) the
final value of Norm Gz is significantly less than that at the starting point; (ii)
during the final major iterations,' the values of Step and ItQP are both one; (iii)
the last few values of both Norm Gz and Norm C become small at a fast linear rate;

and (iv) Cond Hz is small. If all these conditions hold, X is almost certainly a local
minimum of NP. (See Section 9 for a specific example.)

INFORM = 1 The point X satisfies the Kuhn-Tucker conditions to the accuracy requested, but
the sequence of iterates has not yet converged. NPSOL was terminated because no
further improvement could be made in the merit function.

This value of INFORM may occur in several circumstances. The most common
situation is that the user asks for a solution with accuracy that is not attainable
with the given precision of the problem (as specified by Function Precision; see

Section 5.2). This condition will also occur if, by chance, an iterate is an "exact"
Kuhn-Tucker point, but the change in the variables was significant at the previous
iteration. (This situation often happens when minimizing very simple functions,
such as quadratics.)

If the four conditions listed above for INFORM = 0 are satisfied, X is likely to be a
solution of NP regardless of the value of INFORM.
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INFORM = 2 NPSOL has terminated without finding a feasible point for the linear constraints
and bounds, which means that no feasible point exists for the given value of Linear
Feasibility Tolerance. The user should check that there are no constraint
redundancies. If the data for the constraints are accurate only to an absolute
precision a, the user should ensure that the value of the optional parameter Linear
Feaoibility Tolerance is greater than a. For example, if all elements of A are of
oruer unity and are accurate to only three decimal places, Linear Feasibility
Tolerance should be at least 10-3.

INFORM = 3 There has been a sequence of QP subproblems for which no feasible point could
be found (indicated by "I" at the end of each terse line of output). This behavior
will occur if there is no feasible point for the nonlinear constraints. (However,
there is no general test that can determine whether a feasible point exists for a set
of nonlinear constraints.) If the infeasible subproblems occur from the very first
major iteration, it is highly likely that no feasible point exists. If infeasibilities
occur when earlier subproblems have been feasible, small constraint inconsistencies .,
may be present. The user should check the validity of constraints with negative
values of ISTATE. If the user is convinced that a feasible point does exist, NPSOL

*! should be restarted at a different starting point.

INFORM = 4 If the algorithm appears to be making progress, Major Iteration Limit may be
too small. If so, increase its value and rerun NPSOL (possibly using the Warm
Start option). If the algorithm seems to be "bogged down", the user should check
for incorrect gradients or ill-conditioning as described below under INFORM = 6.

Note that ill-conditioning in the working set is sometimes resolved automatically
by the algorithm, in which case performing additional iterations may be helpful.
However, ill-conditioning in the Hessian approximation tends to persist once it
has begun, so that allowing additional iterations without altering R is usually in-
advisable. If the quasi-Newton update of the Hessian approximation was modified
during the latter iterations (i.e., an "M" occurs at the end of each terse line), it
may be worthwhile to try a warm start at the final point as suggested above.

INFORM = 6 A sufficient decrease in the merit function could not be attained during the final
linesearch. This sometimes occurs because an overly stringent accuracy has been
requested, i.e., Optimality Tolerance is too small. In this case the user should
apply the four tests described under INFORM = 0 above to determine whether
or not the final solution is acceptable (see Gill, Murray and Wright, 1981, for a
discussion of the attainable accuracy).

If many iterations have occurred in which essentially no progress has been made,
or NPSOL has failed completely to move from the initial point, subroutines OBJFUN
or CONFUN may be incorrect. The user should refer to the comments below under
INFORM = 7 and check the gradients using the Verify parameter. Unfortunately,
there may be small errors in the objective and constraint gradients that cannot
be detected by the verification process. Finite-difference approximations to first
derivatives are catastrophically affected by even small inaccuracies. An indication
of this situation is a dramatic alteration in the iterates if the finite-difference
interval is altered. One might also suspect this type of error if a switch is made to
central differences even when Norm Gz and Norm C are large.

Another possibility is that the search direction has become inaccurate because of
ill-conditioning in the Hessian approximation or the matrix of constraints in the

%t
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working set; either form of ill-conditioning tends to be reflected in large values of
ItQP (the number of iterations required to solve each QP subproblem).

If the condition estimate of the projected Hessian (Cond Hz) is extremely large,
it may be worthwhile to rerun NPSOL from the final point with the Warm Start
option. in this situation, ISTATE should be left unaltered and R should be reset to
the identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T is
extremely large), it may be helpful to run NPSOL with a relaxed value of the
Feasibility Tolerance. (Constraint dependencies are often indicated by wide
variations in size in the diagonal elements of the matrix T, whose diagonals will
be printed for Major Print Level > 30.)

INFORM = 7 Large errors were found in the derivatives of the objective function and/or nonlin-
ear constraints. This value of INFORM will occur if the verification process indicated
that at least one gradient or Jacobian component had no correct figures. The user
should refer to the printed output to determine which elements are suspected to
be in error.

As a first step, the user should check that the code for the objective and constraint
values is correct-for example, by computing the function at a point where the
correct value is known. However, care should be taken that the chosen point fully
tests the evaluation of the function. It is remarkable how often the values z = 0 or
x = 1 are used to test function evaluation procedures, and how often the special
properties of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function
involves subsidiary data communicated in COMMON storage. Although the first
evaluation of the function may be correct, subsequent calculations may be in error
because some of the subsidiary data has accidentally been overwritten.

Errors in programming the function may be quite subtle in that the function
value is "almost" correct. For example, the function may not be accurate to full
precision because of the inaccurate calculation of a subsidiary quantity, or the
limited accuracy of data upon which the function depends. A common error on
machines where numerical calculations are usually performed in double precision
is to include even one single-precision constant in the calculation of the function;
since some compilers do not convert such constants to double precision, half the
correct figures may be lost by such a seemingly trivial error.

INFORM = 9 An input parameter is invalid. The user should refer to the printed output to
determine which parameter must be re-defined.

a,
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8. IMPLEMENTATION INFORMATION
8.1. Format of the distribution tape
The source code and example program for NPSOL are distributed on a magnetic tape containing
12 files. The tape characteristics are described in a document accompanying the tape; normally

they are 9 tra'.k, 1600 bpi, unlabeled, ASCII, 80-character records (card images), 4800-character

blocks.

The following is a list of the files and a summary of their contents. For reference purposes we

give a name to each file. However, the names will not be recorded on unlabeled tapes. The MACH,

LSCODE and NPCODE files are composed of several smaller source files described in Section 8.3.

File Name Type Cardst Description

1. DPMACH FORTRAN 450 Double-precision source file 1: MCSUBS

2. DPLSCODE FORTRAN 8250 Double-precision source files 2-5: BLAS, ... ,OPSUBS

3. DPNPCODE FORTRAN 6880 Double-precision source files 6-8: CHSUBS,...,SRSUBS -

4. DPLSMAIN FORTRAN 260 Double-precision source file LSMAIN

5. DPNPMAIN FORTRAN 500 Double-precision source file NPMAIN

6. LSMAIN DATA 6 Options file for LSMAIN

7. NPMAIN DATA 14 Options file for NPMAIN

8. SPMACH FORTRAN 450 Single-precision source file 1

9. SPLSCODE FORTRAN 8250 Single-precision source files 2-5

10. SPNPCODE FORTRAN 6880 Single-precision source files 6-8

11. SPLSMAIN FORTRAN 260 Single-precision version of file 4

12. SPNPMAIN FORTRAN 500 Single-precision version of file 5

t Approximate figure.

One MACH, one LSCODE and one NPCODE file should be selected for any given installation.

DPMACH, DPLSCODE and DPNPCODE are intended for machines that generally require double precision

computation. Examples include IBM Systems 360, 370, 3033, 3081, etc.; Amdahl 470, Facom,

Fujitsu, Hitachi, and other systems analogous to IBM; DEC VAX systems; Data General MV/8000;

ICL 2900 series; recent PRIME systems; DEC Systems 10 and 20; Honeywell systems; and the

Univac 1100 series.

SPMACH, SPLSCODE and SPNPCODE are intended for machines for which single precision is suit-

ably accurate for numerical computation. Examples include the Burroughs 6700 and 7700 series:

the CDC 6000 and 7000 series and their Cyber counterparts; and the Cray-1 and Cray-2.

8.2. Installation procedure

1. Obtain the appropriate MACH, LSCODE and NPCODE files from the tape.

2. If necessary, edit the subroutine MCHPAR according to Section 8.5.

3. Decide whether or not to split the LSCODE and NPCODE tape files into source files BLAS through

SRSUBS as suggested in Section 8.3.

4. Compile all the routines that were originally in the LSCODE and NPCODE files together with

those from MACH. Run them in conjunction with the main program NPMAIN from either file 5

or file 12. Check the output against that in Section 9.

% %
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8.3. Source files

NPSOL has been written in ANSI (1977) Fortran and tested on an IBM 3081K computer using the

IBM Fortran 77 compiler VS Fortran. Certain unavoidable machine dependencies are confined to

the routine MCHPAR.

The sourc,- code is divided into 8 logical parts. For ease of handling, these are combined into

the MACH, LSCODE and NPCODE files on the distribution tape, but for subsequent maintenance we

recommend that 8 separate files be kept. In the description below we suggest a name for each

file and summarize its purpose. We then list the names of the Fortran subroutines and functions

involved. The naming convention should minimize the risk of a clash with user-written routines.

File 1. MCSUBS Computation of machine-dependent constants.

MCHPAR MCEPS MCENVl MCENV2 MCSTOR

File 2. BLAS Basic Linear Algebra Subprograms (a subset).

DASUM DAXPY DCOPY DDOT DNRM2 DSWAP DSCAL IDAMAX

These routines are functionally similar to members of the BLAS package (Lawson et al.,
1979). If possible they should be replaced by authentic BLAS routines. (Versions may

exist that have been tuned to your particular machine.)

; DGEMV DGER1

These routines are functionally similar to members of the Level 2 BLAS packages (Don-

garra et al., 1985).

DCOND DDIV DDSCL DLOAD DNORM DSSQ DSWAP ICOPY
IDRANK ILOAD

These are additional utility routines that could be tuned to your machine. DLOAD is used
the most frequently, to load a vector with a constant value.

DROT3 DROT3G DGEAPQ DGEQR DGEQRP DGRFG

These linear algebra routines are used to compute and update various matrix factoriza-

tions in NPSOL.

File 3. CMSUBS General utility routines.

CMALF CMALF1 CMCHK CMFEAS CMPRT CMQMIUL CMRSOL CMRSWP
. CMR1MD CMTSOL

File 4. LSSUBS Least-squares routines.

LSADD LSADDS LSBNDS LSCHOL LSCORE LSCRSH LSDEL LSDFLT
LSFEAS LSFILE LSGETP LSGSET LSKEY LSLOC LSMOVE LSMULS

LSOPTN LSPRT LSSETX LSSOL

File 5. OPSUBS Option string handling routines.

OPFILE OPLOOK OPNUM OPSCAN OPTOKN OPUPPR

File 6. CHSUBS Derivative checking routines.
- CHCORE CHFD CHKGRD CHKJAC "

-p-
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*File 7. NPSUBS Nonlizicar optimization routines.

NPCHKD NPCORE NPCRSH NPDFLT NPFEAS .NPFILE NPGQ NPIQP LM
NPKEY NPLOC NPMRT NPOPTN NPPRT NPSETX NPSRCH NPUPDT
NPSOL

File 8. SRSUBS Linesearch routines.

SRCHQ SRCHC

8.4. Common blocks

Certain Fortran COMMON blocks ai:e used in the NPSOL source code to communicate between sub-
routines. Their names are listedl below.

CMDEBG LSDEBG NPDEBG LSPAR1 LSPAR2 NPPARI NPPAR2 SOL1CN
SOL3CM SOL4CM SOL5CM SOL6CM SOLMCI SOL1NP SOL4NP SOL5NP
SOL6NP SOL7NP SOLlLS SOL3LS SOLISV

8.5. Machine-dependent subroutines

The routine MCHPAR Ii the MACH file may require modification to suit a particular machine or a
non-st anilard application.

At the beginning of NPSOL, MCHPAR is called to assign the machine- dependent constants and
the ttand~ar1 input aild output unit numbers. These parameters are stored in the array WMAC(1S)
Ii the( labeled COMMON block SOLMCH, and are defined as follows.

WMACH( 1) is NBASE, the base of floating-point arithmetic.

WMACH(2) is NDIGIT, the number of NBASE digits of precision.

WMACH(3) is EPS, the floating-point precision.

WMACH(4) is RTEPS, the square root of EPSMCH.

WMACH(5) is RMIN, the smallest positive floating-point number.

WMACH(6) is RTMIN, the square root of RMIN.

WMACH(7) is 'AX, the largest positive floating-point number.

WMACH(8) is RTMAX. the square root of RNAX.

WMACH( 10) is NIN, the file number for the input stream.

UMACH( 11) is NOUT, the file number for the output stream.

i'. Inn i t -it jin MCHPAR. the machine constants are set in one of two ways, depending upon the
4f 1 a hial HDWIRE. which is set in-line.

I' ItDITRE i, FALSE. (t Ili value set for the distributed copy of MCHPAR), the machine constants
; ,f--i 1 r 'nIt 1.1 aI.1 fori thle In achinle being used. If HDWIRE is . TRUE., machine constants

I ht ri T 1 1 % 360 '371) Series are assigned directly to the elements of WMACH.
I' 'it , ie 'I uI ct hod 4f assign Ing the machine constants, you should note the following.

I1 ''t 11, iiaeline constants will always generate a single arithmetic underfiow, and
%ppr-pitat rcrint-ilal action may need to be taken if your machine traps underfiow.4

A I '' 1 itp iletit I te IIIlint- assignment of machine constants for a machine other than
I1 1! , Pi 3i71~) Series, MCHPAR must he miodified as follows.

* o'Ill . af' isaguirent o~f HDWIRE from. FALSE. to. TRUE.. lo
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2. Set the values of WHACH appropriate for the machine and precision being used. The values of
NBASE, NDIGIT, EPSMCH, RMIN and RMAX for several machines are given in the following table,
for both single and double precision; RTEPS, RTMIN and RTMAX may be computcd using Fortran
statements. The values NIN and NOUT depend on the machine installation.
For each precision, we give two values for EPSMCH, RMIN and RMAX. The first value is a For-
tran decimal approximation of the exact quantity; use of this value in MCHPAR should cause
no difficulty except in extreme circumstances. The second value is the exact mathematical
representation.

Table of machine-dependent parameters

IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC Vax

Single Single Single Single Single

NBASE 16 2 2 2 2

NDIGIT 6 48 27 27 24

EPS 9.54E-7 7.11E-15 7.46E-9 1.50E-8 1.20E-7

16" 2-47 2-27 2-26 2-23

RMIN 1.OE-78 i.OE-293 1.OE-38 1.OE-38 1.OE-38

16-65 2-975 2-129 2-129 2-128

MAX 1.OE+76 i.0E+322 1.0E+38 1.0E+38 1.0E+38
163 (1-16 - )  2 1o7o(1-2 -8 )  2 17(1 -2-2) 2 12(1 -2- 27)  2 2(1-2 -2)

IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC Vax

Double Double Double Double Double

NBASE 16 2 2 2 2

NDIGIT 14 96 62 61 56

EPS 2.22D-16 2.53D-29 2.17D-19 8.68D-19 2.78D-17

16-13 2-95 2-62 2-60 2-5

q RMIN 1.OD-78 1.OD-293 1.0-38 i.0D-308 1.OD-38

16-65 2-975 2-129 2-1025 2-128

r RMAX 1.01+75 1.01)+322 1.0D+38 1.0D+307 1.0D+38

A 6 (1-16- 2 (1-2 - 96)  2 (1-2 2 (1-2 2 -2-56)

4,,
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9. EXAMPLE PROBLEM
This section describes one version of the so-called "hexagon" problem (a different formulation is
given as Problem 108 in Hock and Schittkowski, 1981). The problem is to determine the hexagon
of maximum area such that no two of its vertices are more than one unit apart (the solution is not
a regular hexagon). The corresponding sample main program and output from NPSOL are given
in the Appendix.

All constraint types are included (bounds, linear, nonlinear), and the Hessian of the Lagrangian
function is not positive definite at the solution. The problem has nine variables, non-infinite bounds
on seven of the variables, four general linear constraints, and fourteen nonlinear constraints.

The objective function is
it.

F(X) = -X 2 X6 + Za' -X 3X a - X5a' + X4 a 9 + '3 aX.-

The bounds on the variables are

T I <>0 -1< 3 < 1, X5 >0, X6 _0, X72!0, s_<50, and x _0.

Thus,

1B = ( 0, -oc, -1, -00, 0, 0, 0, -0c, c0)T

UB = (00, 00, 1, 00, 00, 00, 00, 0, 0).'

The general linear constraints are

-T2 - I>0, X3 -2 _0, X3 - X4 _0, and 4 -Z 5 >0.

Hence,

-1 1 0 0 0 0 0 0 and u 00
0 0 0 1 -1 0 0 0 0 0 00

0) 0 0 1 1 -1 0 0 0 0

The nonlinear constraints are all of the form ci(x) < 1, for i = 1,... 14; hence, all components
of 'N are -c, and all components of UN are 1. The fourteen functions {ci(x)} are

cma)=2 2 = - XI2 + -62,

c a(') = X1 +-,6 , C2(X) =(a, a'1 ) + (X' a'7),

c3(W) = (aT3 - a') 2 
+ a', C4 (--) = (a' - a 4 )

2 + (a6 - a')
2

,

N cs(a') =(a' - a')
2 + (X6 - a')

2 , C6(_) = X2 + ,
c7 (_) = ( 23 - a,)

2 + Z2, )(2) = (a, - a,) + (X8 - a')
2 ,

cg(X) = (a' - a')
2 + (CS a'9 ) 2 , c 0 (2) = (4 - X2)2 + ),

,ii(a') = (a - 213)2 + X, c 12 (a) = + X,

C1 (a') = (a' a5) + (a' _ a')2, 1 () = 4 + 48.

An optimal solution (to five figures) is

X= (.060947, .59765, 1.0, .59765, .060947, .34377, .5, -.5, -. 34377 ),

%..
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and F(x*) = -1.34996. (The optimal objective function is unique, but is achieved for other values
of x.) Five nonlinear constraints and one simple bound are active at x. The sample solution ou tput
is given later in this section, following the saulple main program and problem definition.

Two calls are made to NPSOL in order to demonstrate some of its features. For the first call,
the starting point is:

o= (.1, .125, .666666, .142857, .111111, .2, .25, -. 2, -. 25 )T

All objective and constraint derivatives are specified in the user-provided subroutines OBJFN1 and
CONFN1, i.e., the default option Derivative Level = 3 is used.

On completion of the first call to NPSOL, the optimal variables are perturbed to produce
the initial point for a second run in which the problem functions are defined by the subroutines
OBJFN2 and CONFN2. To illustrate one of the finite-difference options in NPSOL, these routines are
programmed so that the first six components of the objective gradient and the constant elements of
the Jacobian matrix are not specified; hence, the option Derivative Level = 0 is chosen. During
computation of the finite-difference intervals, the constant Jacobian elements are identified and
set, and NPSOL automatically increases the derivative level to 2.

The second call to NPSOL illustrates the use of the Warm Start option to utilize the final
active set, nonlinear multipliers and approximate Hessian from the first run. Note that Hessian
• Yes was specified for the first run so that the array R would contain the Cholesky factor of the
approximate Hessian of the Lagrangian.

The two calls to NPSOL illustrate the alternative methods of assigning default parameters. For
the first run, the parameters are read from the options file NPMAIN DATA supplied on the distribution
tape. In the second run, the parameters are modified using calls to subroutine NPOPTN. (There is
no special significance in the order of these assignments; an options file may just as easily be used
to modify parameters set by NPOPTN.)

The results are typical of those obtained from NPSOL when solving well behaved (non-trivial)
nonlinear problems. The approximate Hessian and working set remain relatively well-conditioned.
Similarly, the penalty parameters remain small and approximately constant. The numerical results
illustrate much of the theoretically predicted behavior of a quasi-Newton SQP method. As x
approaches the solution, only one minor iteration is performed per major iteration, and the "Norm
Gz" and "Norm C" columns exhibit the fast linear convergence rate mentioned in Sections 6 and 7.
Note that the constraint violations converge earlier than the projected gradient. The final values of
the projected gradient norm and constraint norm reflect the limiting accuracy of the two quantities.
It is possible to achieve almost full precision in the constraint norm but only half precision in the
projected gradient norm. Note that the final accuracy in the nonlinear constraints is considerably
better than the feasibility tolerance, because the constraint violations are being refined during the
last few iterations while the algorithm is working to reduce the projected gradient norm. In this
problem, the constraint values and Lagrange multipliers at the solution are "well balanced", i.e.,
all the multipliers are approximately the same order of magnitude. This behavior is typical of a
well-scaled problem.

%-%

-. _7%t 2



A4

36 User's Guide for NPSOL 4.0

10. REFERENCES
Dennis, J. E., Jr. and Mor6, J. J. (1977). Quasi-Newton methods, motivation and theory, SIAM

Review 19, pp. 46 89.

Dennis, J. E., .r. and Schnabel, R. B. (1981). "A new derivation of symmetric positive definite
secant updates", in Nonlinear Programming 4 (0. L. Mangasarian, R. R. Meyer and S. M.
Robinson, eds.), pp. 167 199, Academic Press, London and New York.

Dennis, J. E., lr. and Schnabel, R. B. (1983). Numerical Methods tbr Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Dongarra, J. J., Du Croz, J. J., Hammarling, S. J. and Hlanson, R. J. (1985). A proposal for an
extended set of Fortran basic linear algebra subprograms, SIGNUM Newsletter 20, 1, 2-18.

Fletcher, R. (1981). Practical Methods of Optimization, Volume 2, Constrained Optimization, John
Wiley and Sons, New York and Toronto.

Gill. P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1984a). User's guide for SOL/QPSOL "1
Versiom 3.2, Report SOL 84-5, Department of Operations Research, Stanford University, Calif-
ornia.

Gill, P. E.. Murray, W., Saunders, M. A. and Wright, M. H. (1984b). Procedures for optimization
lproblems with a mixture of bounds and general linear constraints, ACM Transactions on
Mathematical Software 10, pp. 282-298. j

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1986a). User's guide for LSSOL -
(Version 1.0), Report SOL 86-1, Department of Operations Research, Stanford University,
California.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1986b). Properties of an augmented
Lagrangian merit function for inequality constraints, SOL Report (to appear), Department of
Operations Research, Stanford University, California.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1986c). A sequential quadratic
programming method for nonlinear optimization, SOL Report (to appear), Department of
Operations Research, Stanford University, California.

Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization, Academic Press, London
and New York.

flock, W. and Schittkowski. K. (1981). Test Examples for Nonlinear Programming Codes, Lecture
Notes in Economics and Mathematical Systems 187, Springer-Verlag, Berlin and New York.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. (1979). Basic linear algebra
subprograms for Fortran usage, ACM Transactions on Mathematical Software 5, pp. 308-
325.

Murtagh, B. A. and Saunders, M. A. (1982). A projected Lagrangian algorithm and its implemen-
tation for sparse nonlinear constraints, Math. Prog. Study 16, pp. 84-118.

Murtagh, B. A. and Saunders, M. A. (1983). MINOS 5.0 User's Guide, Report SOL 83-20, Depart-
mnent of Operations Research, Stanford University, California.

Powell. M. J. D. (1974). "Introduction to constrained optimization", in Numerical Methods for Con-
strained Optimization (P. E. Gill and W. Murray, eds.), pp. 1-28, Academic Press, London
an(l New York.

Powell, M. .J. D. (1983). "Variable metric methods for constrained optimization", in Mathematical
Programmig: The State of the Art, (A. Bachem, M. Gr6tschel and B. Korte, eds.), pp. 288--
311, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo.

VAe
[." -I



AO

APPENDIX. SAMPLE PROGRAM AND OUTPUT 97

APPENDIX. SAMPLE PROGRAM AND OUTPUT

U
2 * FILE NPMAIN FORTRAN

4 * Sample program for NPSOL Version 4.0 February 1986.
5 C4......................................... 4+..4+++444*44 ...44444+44

6
7 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

9* Set the declared array dimensions.
10 * NROWA = the declared row dimension of A.
11 * NROWJ = the declared row dimension of CJAC.
12 NRC! = the declared row dimension of R.
13 * MAXN = maximum no. of variables allowed for.
14 * MAXBNO = maximum no. of variables + linear & nonlinear constrnts.
15 * LIVORK = the length of the integer work array.
16 * WORK = the length of the double precision work array.
17
Ia PARAMETER (NROWA = 5, NROWJ = 20, HROWI = 10,
19 $ tAXN = 9, LIWORK = 70, LWORK = 1000.
20 $ MAXBND = MAXN 4 NRO14A + I OIJ)
21
22 INTEGER ISTATE(MAXBNO)
23 INTEGER I;ORK( LIk'ORK)
24 DOUBLE PRECISION A(lROWA.IAXN)
25 DOUBLE PRECISION BLIMAXBNO), BU(NAXBN)
26 DOUBLE PRECISION C(NROWJ), CJAC(NROWJ,HAXN), CLAMDA(MAXBNO)
27 DOUBLE PRECISION OBJGR(IMAXN), R(NROW R ,AXN), X(MAXN)
28 DOUBLE PRECISION WORK(LUORK)
29 EXTERNAL OBJFNI, OBJFN2, CONFNI, CONFN2
30
31 PARAMETER (ZERO = 0.0, ONE = 1.01
3?

33 * Set the actual problem dimensions.
34 * t = he nu.cber of variables.
35 * HCLIN = the number of general linear constraints (may be 0).

*36 * CN4LN = the number of nonlinear constraints (may be 0).
37
38 N = 9
39 h4CLIN 4
40 NCNLN = 14
41 NBD = N + NCLIN + NCNLN
42

44 * Ansign file numbers and the data arrays.
45 * NOUT = the unit number for printing.
46 * IOPTNS :=the unit number for reading the options file.
47 * Doun- .ge. BIGB.D will be treated as plus Infinity.
C8 * Bounds .le. - BIGBhW will be treated as minus infinity.
49 * A = the linear constraint matrix.

50 * BL = the lower bounds on x, a'x and clx).
51 * BU = the upper bounds on x, a'x and c(x).
52 * X = the initial estimate of the solution.

, 53 * ------------------------------------------------------------------

E4 NOLIT =6
55 IOPTNS = 5

"

, . . . . . . . . .. .. .. . .. . ... ... ,
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"'56 BIGBND 1.0D415

57
58 * Set the matrix A.
59
60 DO 40 J = I, N
61 O0 30 1 = 1, NCLIN
62 A(I,J) = ZERO
63 30 CONTINUE
64 40 CONTINUE
65 A(1,1) = -ONE
66 A(1,2) = ONE

. 67 A(2,2) = -ONE
68 A(2,3) = ONE
69 A(3,3) = ONE
70 A(3,4) = -ONE
71 A(4,4) =ONE
72 A(4,5) = -ONE
73
74 * Set the bounds.
75

. 76 00 50 J = i, HB)

* 77 BL(J) = -BI6BNI
)a BU(J) =BIGNIM
79 50 CONTINUE
0 BL(1) = ZERO

81 BL(3) = -ONE
82 BL(5) = ZERO
83 BL(6) = ZERO
84 BL(7 = ZERO
65
86 BU(3) = ONE
"7 BU8) = ZERO
88 BUM9 = ZERO
89
90 * Set lower bounds of zero for all four linear constraints.
91
92 00 60J =N+1. 144NCLIt4
93 BL(J) = ZERO
c4 60 CONTINUE
95
9* Set upper bounds of one for all 14 nonlinear constraints.
97
S3 10 70 J = N NCLIN +, 1 B

4 99 BU(J) = ONE
100 70 CONTINUE
101
102 Set the initial estimate of X.
103
104 XM = .1
105 X(2) = .125
106 X(3) = .666666
107 X(4) =.142857
108 X(S) = .111111
109 X(6) = .2
110 X7) = .25

.l' ' , _, ..o "". .. , , J~ '4, q ". 44 --' -- ' x "Q. ' : . : C <. '2 N : ' : N
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II1 X(8) = -. 2
112 X(9) = -. 25
113
114
115 ------------------------------------------------------------------.

116 * Read the options file.
, 1 1 7 -

118

119 CALL NPFILE( IOPTNS, INFORM
120 IF (INFORM .NE. 0) THEN
121 WRITE (NOUT, 3000) INFORM
122 STOP
123 END IF
124

125 * Solve the problem.
127 *
128
129 CALL NPSOL ( N, NCLIN, HCNLN, IROA, 1POWJ, NROWR,
l30 $ A, BL, BU,
131 $ COtFNI, OBJFNI,
132 $ INFORM, ITER, ISTATE,
133 $ C, CJAC, CLAMDA, OBJF, OBJGRD, R, X,
134 $ IWORK, LIWORK, WORK, LNORK )
135
136 IF (INFORM .GT. 0) GO TO 900
137
138 ------------------------------------------------------------------
139 1 The following is for illustrative purposes only.
140 1 A second run solves the same problem, but defines the objective
141 1 and constraints via the subroutines OBJF142 and CONFN2. Some
142 * objective derivatives and the constant Jacobian elements are not
143 * supplied.
144 * We do a warm start using
145 *6 ISTATE (the ,,working set)

146 * CLA,1DA (the Lagrange multipliers)
147 * R (the Hessian approximation)
148 * from the previcAm run, but with a slightly perturbed starting
149 * point. The previous option file must have specified
150 * Hessian Yes
151 * for R to be a useful approximation.

153
154 DO 100 J = 1, N
155 X(J) = X(J) + 0.01
156 100 CONTINUE
157 The previous parameters are retained and updated.

159
160 CALL NPOPTN( Derivative level 0)

6-i 161 CALL NFOPTI[ Verify No')
162 CALL KPOPTN( * Warm Start')
163 CALL NFOPTN( ' Major iterations 20')
164'. 165 CALL NPOPTN( Major print level 10')

;L
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166
167 CALL NPSOL ( N, NCLIN, NCNLH, RO4A, HROW, NROWR,
168 $ A, BL, 6U,
169 $ CONFN2, OBJFI2,
170 $ INFORM, ITER, ISTATE,
171 4 C, CJAC, CLADA, OBJF, OBJGRD, R, X,
172 $ IWORK, LIWORK, WORK, Li4ORK
173
174 1F (INFORM .GT. 0) 60 TO 900
175 STOP U
176
177 * -----------
178 * Error exit.
179 * ----------- :'1790

ISO
181 900 WRITE (HOUT, 3010) INFORM
182 STOP
183
184 3000 FCItAT(/ NPFILE terminated with INFORM 1', 13)
135 3010 FORMAT(/ ' NFSOL ierminated with INFORM r 13)
186

167 * End of the example program for NPSOL.

189 ENO
19 0 * +*+ + + + . .+ 4 . + . .. .........
191
192 SUBROUTINE OBJFNI( MOE, N, X, OBJF, OWJGRO, NSTATE 3
193 IMPLICIT DOUBLE PRECISION(A-HO-Z)
194 DOLBLE PRECISION X(N), OBJGRD(N)
195
196 * -----------------------------------------------------------------------
197 * OBJFNI computes the value and first derivatives of the nonlinear
198 * objective function.
f99 * -----------------------------------------------------------------------
200 OBJF - X(2)*X(6) + X(I)*X(7) - X(3)*X(7) - X(5)*X(8)
?Ori $ + X(4)*X(9) * X(3)*X18)
2G2
203 OBJGD(13) X(7)
-0204 OBJGPD(2) = - X(6)
203 OBJGrO(3) = - X(7) * X(8)
206 O.JGRD(4) = X(9)
207 OBJGRD(5) = - X(8)
208 OPJGPD(6) = - X(2)
209 03JG..D(7) = - X(3) + X(t)
210 CBJSRD(8) = - X(5) 

+ 
X(3)

"4 211 CBJGRD(9) = X(4)
212
213 RETURN
214
215 * End of O9JFN1.
216
217 END21 ................

219
220 SUBROUTINE CONFNI( MODE, NCNLN, N, HROJ,.

,1-1-- -....% %...". .. %..=.... .......*%-% %,".%.'. .•..%.. ,. .. %...... .. ... .. %.. .



APPENDIX. SAMPLE PROGRAM AND OUTPUT 41

221 $ NEEOC* X9 C, CJAC, tSTATE )
222
223 IMPLICIT DOUBLE PRECISION(A-HO-Z)
224 INTEGER NEEDC(*), 225 DOUBLE PRECISION X(N), Ci,*), CJAC(NROIIJIw)
226

228 * COfFNI computes the values and first derivatives of the nonlinear
229 * constraints.
230 *
231 * The zero elements of Jacoblan matrix are set only once. This
232 * occurs during the first call to CONFNi (NSTATE = 1).

234 PARAMETER (ZERO = 0.03 TWO = 2.0)
235
236 IF iNSTATE .EQ. 1) THEN
237
238 * First call to CONFN1. Set all Jacobian elements to zero.
239 * N.B. This will only work with 'Derivative Level = 3'.
240

241 DO 10 J = 1, N
242 00 110 I 1, NCNLN
243 CJAC(IsJ) = ZERO
244 110 CONTINUE
245 120 CONTINUE
246
247 EN IF
248

* 249 IF (NEEDC(1) .ST. 0) THEN
250 C(I) = X(1)**2 * X(6)**Z
251 CJAC( 11) = TNO*X(I)
252 CJAC(I,6) TWO*X(6)
253 END IF
254
255 IF (EEDC(2) .GT. 0) THEN

256 C(2) = iXZ) - X(I))2 4 X(7) -X(6))Z
257 CJAC(2,1) TWOWX(Z) - X(I))
253 CJAC(2,2) = TO)*(X(2) - X(I))
259 CJAC(2,6) =- TtO*(X(7) - X(6))
260 CJAC(2,7) TWO*(X(7) - X(6))
261 EM IF
262
263 IF (NEEDC(3) .GT. 0) THEN
264 C(3) (X(3) - X(1))**2 + X(6)**2

r 265 CJAC(3,0) - T6*(X(3) - XCI))
266 CJAC(3,3) T.WO*(X(3) - X(1))
267 CJAC(3,6) TIO*X(6)
268 END IF
269
270 IF (NEEDC(4) .GT. 0) THEN
271 C(4) X(I) - X(4))**2 * XC6) -X(8))**

" 272 CJAC(4,1) TWO*(X() - X(4))
273 CJAC(4,4) - TO*(X(I) - X(4))
274 CJAC(4,6) TWO*(X(6) - X(8))
275 CJAC(4,8) = - TC*(X(6) - X(8))

..%
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276 END IF
277
278 IF (NEEDC(53 .6T. 0) TThEN
Z79 C(s) MXC) - X(S))**2 *(X(6) -XC9))0*2

280 CJACC5,13 TktO*CXC1) - X(S))
282 CJAC(5,5) =- T1lO*(X(1) - X(S))

*282 CJAC(S,6) = Tk'O*CX(6) - X( 9))
283 CJAC(5v9) =- TWO*(X(6) - X( 9))
284. END IF
295

2.6 IF (NEEOC(6) .GT. 0) THEN
*287 C(6) = X(2)N*E2 *X(7)**2

288 CJACC6,2) = TWO*4X(2)
239 CJACC6,7) = Tkn*XC7)
290 END IF
291
292 IF CHEEDCM7 .GT. 0) THEN
-93 CM7 (X(3) - X(2))**Z + X(7)*wZ
294 CJAC(7,21 - ThO*(X(33 - X(2))
?95 CJAC(7,3) = TWO*(X(3) - XC2))

*296 CJAC(7,71 TWO*X(7)
297 END IF
293
.-99 IF (NEEI2C(8) .ST. 0) THEN
300 C(8) (X(4.) - X12))WZ*2 + X(8) -())*

301 CJAC(8,2) -T140*(XC'.) - X(2))
202 CJAC(8,4) = TWG*CX(4) - X(2))
303 CJAC(8,7) = -TWO*CX(8) - XC 7))
304 CJAC(898) = TIWOW(X(8) - X7)
305 END IF
306
307 IF CNEEOC(9) .GT. 0) THEN
308 C(9) (X(2) - X(51)**2 *(X(7) -X(9))W*2 I309 CJACt9,2) = TWO*(X(2) - X(5))
310 CJAC(9*5) =- TWO*(X(2) - X(51)
3 11 CJAC(9w7) = TWO'(X(7) - X(9))
312 CJACC9,9) =- TWO*CX(7) - X(9))
313 END IF
31.4
315 IF (NEEM0Cb) .ST. 0) THEN
316 C(10) (X(4.) - X(3))**Z + X(8)**2
317 CJAC(10,3) =- TWO*(X('.) - X(3))

S318 CJAC(1094) = TWO*(X(4) - X(3))
319 CJAC(10,8) = TWG*X(8)
320 END IF
321
322 IF (NEEDC(11) .6T. 0) 'MENI
323 CCI1) MXs) - XC3))**2 + X(9)*uZ
32e4 CJACC1I,3) =- TWO*(XCS) - X(3))
325 CJAC(11,5) = T140*(X(S) - X(3))
326 CJAC(11,9) TWO*XC9)

'327 END IF
3Z8
329 IF CNEEOCC 12) .S1. 0) THEN
330 C(12) X(4)**E + XC8)vi.2

V .. ,
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331 CJAC(12,4) TWO*X(4)
332 CJAC(12,8) TWO*X(8)
333 END IF
334
335 IF INEEOC(13) .ST. 0) THEN
336 C(13) (X(4) - X(5))*2 * (X(9) -Xle))*

-0 337 CJAC(13,4) TWO(X(4) - X(5))
338 CJAC(13,5) - TWO*(X(4) - X(5))
339 CJAC(13,8) - WO*(X(9) - X(8))
340 CJAC(13,9) = TWO*(X(9) - X(8))

• 341 END IF
342
343 IF (NEEOC(14) .GT. 0) THEN
344 C(14) = X(5)** * X(9)**Z
345 CJAC(14,5) = TWO*X(5
346 CJAC( 14,9) = TWO*X(9)
347 END IF
348
349 RETURN
350
351 N End of CONFNI.
35Z

\.' %. 353 END

355
356 SUBROUTINE OBJFN2( MOVE, N, X, 05JFo OBJGRO, NSTATE I
357 IMPLICIT DOLBLE PRECISIOH(A-H,O-Z)
355 DOUBLE PRECISION X(N), OBJGRD(N)
359360 * -.......................................................................

361 * OSJFN2 coMutes the value and some first derivatives of the
562 * nonlinear objective function.

3 3 * .......................................................................
364
365 OJF : - X(2)X(6) + X(1)*X(7) - X(3)*X(T) - X(S*X(8)
366 $ * X(4)*X(9) + X(3)*X(a)
367
368 OBJGRD(3) = - X(7) * X(8)
369 OBJGRD(7) = - X(3) + Xii)
370 OBJGRD(8) = - X(5) + X(3)
371

= 37Z R ETURN
373

374 * End of OBJFNZ.

375
376 END
377 +***4*+4+4 *+*+****+******4 **+ **4,I,**,,,***,** ***
378
379 SUBROUTINE COHFNZ( MODE, NCNLNs N, NRO14J,S330 $ NEEDC, X, C9 CJAC, NSTATE)

~~~~383 I EE ED( IMPLICIT DOUBLE PRECISIN( A-HPO-Z )

333 IN4TEGER NEEOC(*)
rN 334 DOUBLE PRECISION X(N), C(*), CJAC(NROWJv*). -,* 385

I

VL V
--- *.CV

• ., - -.-.. .- .-.-...-, .- . r . ' , " .. .-, .-. -. - , .-. , . -. " .' . ,' _ r .a ' - ., . ,,, , - ., ' , " % , ' '0 " ,,.rI, ,,.. ..-
' '..'+.:.: ?.:...,+ : .. .', " "' .; '-',' ",',; .%"*s e ' .*%", "" ', - : " " -:
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386 * -----------------------------------------------------------------------
387 * CONH2 computes the values and the non-constant derivatives of
388 * the nonlinear constraints.
389 * -----------------------------------------------------------------------
390 PARAMETER (TWO = 2.0)
391
392 IF (NEEDC(I) .GT. 0) THEN
393 C(1) = X(1)*z + X(6)**2
3(4 CJAC(I,1) = TWO*X(l)
395 CJAC(1,6) = T1O*X(6)
396 END IF
397
398 IF (NEEOC(2) .GT. 0) THEN

, 399 C(Z) (X21 - Xtt))**2 + (X(7) - X(6))*2
400 CJAC(2p1) = - TWO*(X(2) - X(1))
401 CJAC(2,2) = TWO*(X(Z) - X(1))
402 CJAC(2,6) = - TWV*(X(7) - X(6))
403 CJAC(2,7) = TIO%*(X(7) - X(6))
404 END IF
405
406 IF (NEEDC(3) .GT. 0) THEN
407 C(3) (X(3) - X(l))**Z + X(6)**2
4,08 CJAC(3,I) = - TWO*(X(3) - X(I))

. 409 CJAC(3,3) = Tk'O*(X(3) - X(I))
410 CJAC(3,6) = TWO*X(6)

* 411 END IF
4.12
413 If (oEEDC(4) GT. 0) THEN
4.14 C(4) (X(I) - X(4))**2 + (X(6) - X(8))*2
415 CJAC(4,I) = TWO*(X(1) - X(4))
416 CJAC(4,') = - TW'O*(X(1) - X(4.))
417 CJAC(4o,6) = TWON(X(6) - X(8))
418 CJAC(4,8) = - TWO*(X(6) - X(8))
419 END IF
420
C41 IF (EEDC15) .GT. 0) THE4
42Z C(S) (X(l) - XIS))*2 . (X(6) - X(91)**2
423 CJAC(5,t) = TWO*(X(C) - X(5))
424 CJAC(5,5) = - TWON(X(C) - X(5))
425 CJAC(5,6) = TWO(X(6) - X(9))
426 CJAC(5,9) = - TWO*tX(6) - X(9))
427 END IF
428
429 IF (NEEDC(6) .6T. 0) THEN
4,30 C(6) = X(Z)**2 + X(7)**2
431 CJAC(6,2) = TNO*XZ)
432 CJAC(6,7) = TWOaX(7)
4,33 END IF
434
435 IF (NEEDC(7) .GT. 0) THEN
436 C(7) (X(3) - X(2))**2 X(7)W2
437 CJAC(7,2) = - T40*(X13) - X(2))
4.38 CJAC(7,3) = TWO*CX(3) - XQ))
439 CJAC(7,7) = TWOX(7)
440 END IF

Nr9N")
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441m y442 IF (NEEDC(8) .GT. 0) THEN
443 C(s) (X(4) - XZ** + X8 -a ()-
444 CJACIB,2) =- *rWO*(Xt4) - X(2))

*445 CJAC(8 = TWO*(X('*3 - X(2))
4- : ~ '46 CJAC(8,7) =- TWO*(X(8) - X(7))
4~ '47 CJAC(8,81 = TWO*(X(8) -X()
445 END IF
4*49

F450 IF It4EEOC(9) .GT. 0) THEN
451 C(9) (X(2) - X(5))**2 ( X(?) - X(9))**Z
'*52 CJAC(9,Z3 TW0*(X(Z) - X(53)
453 CJAC(995) TWO*(X(2) - X(5))
4*54 CJACC9,7) = TWO*(X() - X(9))
455 CJAC(999) -TWO*(X(7) - X(9))

453 I (NEEDC(101 .GT. 0) THENX()w
47'59 C(10) (()-X3)* ()*
4V'60 CJAC(t0,3) =- TW0*M(X4) - X(3))
4*61 CJAC(10*4) = 7W0*(X('*) - X(3))
462 CJAC(10,8) = Tt% )*X(S)
4*63 END IF
4*64
4*65 IF (NEEDC(11) S6T. 0) THEN
466 C(11) (X(5) - X(3)W*2*E X(9)**2
467 CJAC(11)3) =- TWO0*(X(5) - X(3))
4*63 CJAC(11,5) = TI%1*(X(S) - X(3))
469 CJAC(1199) = TWO*X(9)
4A'70 EDI

471
*472 IF (NEEDC(12) S6T. 0) THEN

4*73 C(12) X(4)**Z X(8)**Z
4*74 CJAC(i2,4) = TW*X(4)
475 CJAC(12,8) TWO*X(8)
476 END IF

478 IF (NEEDCI 13) .GT. 0) THEN -X8)w

480479AC(13) T*(X(4) - X)) X9 ()-
480 CJAC(13,5) z Ti:O*(X(4) - X1S))

482 CJAC(13,8) =- TWDN(X(9) - f)
483 CJAC(13#9) c TWOM(X(9) - X(8))
484 END IF
485
4 'e6 IF (NEECI 14 T. 0) THEN
457 C(14) = X(5)**z + X(9)**2
488 CJAC(14,5) = TIJO*X(5)
489 CJAC(14,9) = TW0O*X(9)
4*90 END) IF

* * 49 1

4*92 RETUR~N
4*93
494. End of CONFN2.
4195

>,. -496 E NO

A I
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OPTIONS file

BEGIN Options for NPSOL 4.0 Sample problem.

Verify Level 3
Major iterations limit so
Major print level 5

Start constraint check at column I
Stop constraint check at colum 2
Start objective check at column 7
Stop objective check at column 9

Hessian Yes a Ready for the next run.

End

SOL/NPSOL --- Version 4.0 Feb 1986
s2a;%

Parameters

* Linear constraints ..... 4 Linear feasibility ..... 1.49E-08 COLD start .........
Variables .............. 9 Infinite bound size .... 1.00E+I0 Crash tolerance ........ 1.00E-02

Infinite step sixe ..... 1.00E410

Nonlinear constraints.. 14 Optlmality tolerane... 5.36E-12 Function precision ..... 8.16E-IS
Honlinear Jacoblan vars 9 Nonlinear feasibility.. 1.49E-08
Nonlinear objectiv vars 9 Linesearch tolerance... 9.00E-01
EPS Imachine precision) 2.22E-16 Derivative level ....... 3 Verify level ........... 3

M Major iterations limit. so Major print level ...... S
* Minor iterations limit. 81 Minor print level ...... 0

Workspace provided Is IN( 70), M( 1000).
To solve problem we need IN( 59), M( 968).

Verification of the constraint gradients.

The Jacobian seems to be ok.

The largest relative error "as 9.98E-09 in constraint 2 I

Column X(J) DXIJ) Ross Jacobian Value Difference Approxn Itn

-0 T;%,

aA

,'
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I i.OOE-0I 1.31E-07 I 2.00000048E-Ol 2.00000048E-01 OK I
1.28E-07 2 -4.99999523E-02 -4.99999523E-02 OK I
1.49E-07 3 -1.13333189E*00 -1.13333189E*00 OK I
I.38E-07 4 -8.57139826E-02 -8.57139826E-02 OK I
1.40E-07 5 -2.22219229E-02 -2.22219229E-02 OK I

Column X(J) DXIJ) Rom Jacoblan Value Oifference Approxn Itins

2 1.25E-01 1.28E-07 a 4.99999523E-02 4.99999523E-02 OK I
1.33E-07 6 2.50000000E-O 2.SOOOOOOOE-O! OK I
I .4.9E-07 7 -1.08333194E400 -I.08333194E*00 OK I
i 1.40E*07 8 -3.57140303E-02 -3.57140303E-02 OK t1.43E-07 9 2. 77780294tE-02 2. 777802 94E-02 OK I

1V"' 0 Jacoblan elements out of the 10 set In cola I through Z sees to be ok.

The largest relative error mas 2.13E-i in ro 9, coh 2

Verification of the objective gradients.

The objective gradients seem to be ok.

Directional derivative of the objective 1.20539630E-01
Difference approximation 1.20539630E-01

- J XIJ) DXIJ) G(J) Difference approxn Ztrs

7 2.50E-01 2.26E-06 -5.66665947E-01 -5.66665947E-01 OK 3
8 -2.00E-01 2.17E-06 S.55554986E-01 5.55554986E-01 OK 3
9 -2.50E-01 2.26E-06 I.'2857015E-01 I.4285701SE-01 OK 3

3 Objective gradients out of the 3 set in eola 7 through 9 seem to be ok.

'The largest relative error was 2.21E-II in element 7

Itn ItQP Step Nfun Mlerit Und Lin Nn Ift Morm 6f Norm 6z Cond H Cond Hz Cond T Norm C Penalty Conv
0 S 0.0E*00 I -3.134.917E-01 3 0 I 5 8.8E-01 3.7E-01 I.E00 I.E4O0 1.E*00 8.8E-01 O.0E400 F FF
1 9 I.0E+00 2 -I.075027E#00 1 0 3 5 2.2E400 1.5E+00 I.E02 7.E+00 2.E00 8.6E-01 1.3E+00 F FF
2 4 i.OE400 3 -1.268553E*00 1 0 4 4 1.7E400 3.3E-01 9.E+00 I.E400 2.E400 1.3E-01 I.3E400 F FF
3 2 i.OE0O0 4 -1.331667E*00 1 0 S 3 1.9E*00 2.SE-01 4.E0i 2.E*O0 2.E*00 I.iE-Oi 1.3E400 F FF

- 4 1 1.0E400 5 -I.349354E#00 1 0 5 3 1.8E*00 4.5E-02 3.E4OI I.E+00 2.E+00 I.4E-02 1.3E*00 F FF
5 i I.02*00 6 -I.3'9874E*00 1 0 5 3 i.8E+00 6.7E-03 3.E*Oi 2.E+00 2.E400 9.1E-04 1.3E200 F FF
6 I 1.OE*00 7 -1.349913E*00 1 0 5 3 I.8E*00 5.3E-03 3.E01 2.E+00 2.E+00 5.7E-05 1.3E400 F FF
7 1 I.OE400 8 -I.349963E*00 1 0 5 3 i.8E00 1.2E-03 I.E02 2.E+00 2.E4O0 3.iE-04 6.8E00 F FF
8 1 I.OE*00 9 -I.349963E+00 I 0 5 3 1.8E00 1.6E-04 I.E+02 3.E+00 2.E400 9.0E-07 6.8E400 F FF
9 1 I.0E400 10 -1.349963E400 I 0 5 3 1.8E00 5.4E-06 3.E4OI 2.E400 2.E+00 1.2E-08 6.8E+00 F TT

10 1 I.0E*00 11 -1.349963E200 i 0 S 3 1.8E*00 2.OE-07 4.E401 Z.E'00 2.E+00 6.AE-11 6.OE400 F TT
" ii I .0E400 12 -1.349963E+00 i 0 S 3 I.8E400 i.1E-08 1.E02 2.E*00 2.E400 4.7E-14 6.8E*00 T TT

, Exit PIP phase. INFORM a 0 MAJITS i1 NFU 12 NGRAD : 12

Exit HNPSOL - Optimal solution found.

.,
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Final nonlinear objective value = -i.349963

Calls to NPOPTt

Derivative level 0r'" "Ver Ify N4oI
Wiarm S tart

Major Iterations 20

Major print level 10

SOL/NPSOL --- Version 4.0 Feb 1986

Parameters

Linear constraints ..... 4 '.Aner feasibility ..... 1.49E-08 MAR" start .............
Variables .............. 9 Infinite bound size .... i.OOE410 Crash tolerance ........ i.OOE-02

Infinite step size ..... 1.OOE4IO

Nonlinear constraints.. 14 'timality tolerance... 5.36E-12 Function precision ..... 8.16E-IS
Nonlinear Jacobln vars 9 Non inear feasibility.. 1.49E-08
Nonlinear objectiv vars 9 Linesearch tolerance... 9.00E-OI
EPS (machine precision) 2.22E-16 Derivative level ....... 0 Verify level ........... -I

Iajor iterations limit. 20 Major print level ...... 10Minor iterations limit. 81 Minor print level ...... 0

Workspace provided is IN( 70), W( 1000).
To solve problem we need IN( 59), W( 968).

: 1 user sets 44 out of 126 Jacoblian elements.
Each iteration, 82 Jacoblan elements will be estimated numerically.

The user sets 3 out of 9 objective gradient elements.
Each iteration, 6 gradient elements will be estimated numerically.

Computation of the finite-difference intervals

J XIJ) Forward DX(J) Central OX(J) Error est.

I 7.09E-02 I.935067E-06 1.935067E-05 1.979764E-08

2 6.08E-01 2.904821E-06 2.904821E-05 I.318833E-08
3 1.OOE400 3.613750E-07 3.613750E-06 0.000000E4O0
4. 6.08E-01 2.904821E-06 2.904821E-05 1.318833E-08
5 7.09E-02 1.935067E-06 I.935067E-05 1.979764E-08

6 3.54E-01 2.446096E-O6 2.46096E-05 1.566159E-08
7 5.10r-i 2.72838IE-07 2.728381E-06 O.O00000E00

..- .A-
.t
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.5

-' 8 -4.9:E-0: 2.692244E-:7 2.692244*E-06 0.000000E+00

9 -3.3, E-01 2.409958E-06 2.:409958E-05 1.589644E-08

.1*b •~

"' 82 constant conlstraint gradient elements assigned.

;. .% 0 constant objective gradient elements assigned.

: All missing Jacobiarn elements or* constants. Derivative level Increased to 2

IP' tn ItQP Step Nfun Mlerit &-id Lin Nln Nz Hors Sf Norme Gz Cond H Corgi Hz Cond T Norm C Penalty Cony

0 1 0.0E+'00 I -1.349188E+00 1 0 5 3 1.8E+00 1.5E-02 3.E*01 4.E+00 1,E400 Z,8E-02 Z .ZE*00 F FF
I I 1.0E400 3 -1.349963E#00 1 0 5 3 1.EE00 1.3E-03 I.E402 7.E* 00 I.E+00 3.0E-04 3.0E+02 F FFI1

: 2 1 1.0E+'00 4 -1.349963E#00 1 0 5 3 t.8E*00 3.5E-04 6.E#01 6.E400 2.E400 7.8E-07 2.1001 F FF
- 3 1 ! .0E+00 5 -1.349963E+00 1 0 5 3 1.8E+00 2.0E-04 8.E401 3.E*00 2.E400 2.3E-08 7.7E+00 F FF

4- 1 1.0E+00 6 -1.349963E#00 1 0 5 3 1.8E400 7.4E-06 9.E#01 3.E400 2.E400 3.9E-08 7.7E*00 F FF

5 1I!.0E+00 7 -1.349963E#00 1 0 5 3 1.8E400 S.9E-07 2E#02 3.E400 2.E+00 4.0E-11 7.7E+00 F TT6 ! !.0E+00 8 -1.349%3E#00 1 0 S 3 1.8E+00 2.6E-09 6.E*01 2.E400 I.E900 2.0E-13 7.7E400 T TT

Exit NP phase. NFORM = 0 PAJRTS 6 NFU= 8 NGRAD 7

, Variable state Value Lower bound Upper bound Logr multiplier Residual
V-.EBL I FR 0.60466E-01 0.0000000E*00 Nore 0.0000000E+00 0.6095E-01

VARBL 2 FR 0.59764*93 Norm Norm 0.0000000E+'00 0. 1000E*,16
-VARDL 3 UL 1. 000000 -1. 000000 1. 000000 -0.68754129 0. 0000E4 00

VARB 4 FR 0. 5976493 None Norm 0.0000000E*00 0. 1000E4 16S V L 5 FR 0.60966E-0 0.000000E600 None 0.0000000E00 0.6095E-01

.'' ., VARBSL 6 FR 0.3437715 0.000000CE400 Norm 0.0000000E+00 0.3438
VRBL 7 FR 0.5000000 .o0cti gd tE+00 None .0000et sEd00 0.5000

t," VAROL 8 FR -0.5000000 Norm 0,0000000E+00 0.0000000E+00 0.5000
" ' VARBSL 9 FR -0.343771S Home 0.0000000E+00 0.0000000E400 0.34038

0Lirva constr Sate Value Loer bound Upper bound Lagr ultiplier Residual

• ." LICON I FR 0.5367026 0.0000000E+00 Noe 0.0000000E400 0.5367
• UX " Lt'ON 2 FR 0.4023507 0.0000000E+00 None 0.0000000E#00 0.4024
•%" LIXON 3 FR 0.4023507 0. 0000000E+00 Norm 0.0000000E400 0.4024AllON FR 0.567027 0.0000000E00 Nee i .nc 0aedto E+00 0.5367

S on Inr onstr State Value Lowdr bound Upper bm f Lagr multiplier Residual

LC0 I O.0 I -1.11889 0 Norm 1.000000 0.10000000E000 0.8781
. . LCOH 2 FR 0.314571 None 1.000000 0.0000000E+00 0.6875
. I2LCC+| 3 UL .000000 Norm I.000000 -0.8318406E-01 -0.1652E- 0F

, LCONl 4 UL !.000000 None 1.000000 -0.320262S -0.1104E-12
tI!-CO 5 FR 0.4727152 Norm 1.000000 0.0000000E00 0.5273
tILCOA ' 6 FR 0.607187 Nom 1.000000 0.0000000E+00 0.3928
fJ tLCOt! 7 FR 0.4118861 Norm 1.000000 0. 0000000E+00 0.5881
N.CO0 8 UL 1.000000 No0e 1.000000 -0.1992983 0.0000E.00

6 1CO 0 9 UL 1.000000 Norm 1.00000 -0.3202625 -0.8882E-14
NLCC.4 10 FR 0.4118861 Nor 1.000000 O.Hon0000000E00 0.5101V RIl 31 UL 1.000000 None 1.000000 -0.8318406E-01 -0.266E-13

-IILC iS FR 0.607187 . MN 1.000000 0.0000000E+00 0.3928
- VtCt, 73 FR 0.5124571 0 o00 1.000000 00e0.0000000E00 0.6875

.IOLCCt 18 FR 0.1218933 None 1.000000 0.^0000*0 0.8781

! 0 Exit NPSOL -Optimal solution found

Final conltnear objective value t b-U.ti9963

%

•I...-RI.56726.-0,.0..-.on .,..-0.0,:, .53 ..7

LtCN2 R 04030 00000 "0 None '" " "" :" 0 .00000"0 0.4024 -"" : -" ": ' ''- 4"
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INDEX Cheap gradient test, 23.
Checklist of optional parameters, 23.

AL (general linear constraint matrix), 1, 5, 21. Cholesky factor, 3, 5, 6, 10.

A. (.lacobi;u of nonlinear constraints), 2, 5 (also CJAC, 10 (definition), 14.

see Jacobi;uJ matrix). CLAMDk, 10 (definition), 17.

* A, 7 (definition). Cold Start, 9, 10, 17 (definition).

Accuracy Comment (in optional parameter specification),

desired in optimal solution, 21-22, 27 (also see 15.

Optimality Tolerance). Common blocks, list of, 32.
of finite-difference gradients, 19. Cond H, 25.
of linesearch, 20. Cond Hz, 25.
of nonlinear constraints at solution, 22, 27 Cond T, 25.

(also see Nonlinear Feasibility Tolerance). Conditions for optimality, 2, 8, 21-22, 25, 27.
of projected gradient at solution, 22, 27. CONFUN (user-provided subroutine)

Accurate linesearch, when appropriate, 20. calls needed for unspecified Jacobian elements,

Active constraints 18.
definition, 2. definition as parameter of NPSOL, 8.

predicted, 3, 24. specification, 13-14.

residuals at solution, 8, 20, 22. Constant Jacobian elements

Active simple bound, 2 (also see Fixed variable), assignment of 10, 14.
Algorithm of NPSOL, description, 2-6. automatic computation of, 14, 35.
o (step length in major iteration), 2, 4, 6, 22, 24. Constrained linear least-squares, 1.

choice of, 4, 6. Constrained stationary point for QP, 5.

printed value, 24. Constraints
Amdahl 470, 30. dependencies, resolution of, 27, 28-29.

ANSI (1977) Fortran, 1, 30. nonlinear, specification by user (see CONFUN).
Approximate status indicator (see ISTATE).

gradients (see Finite-difference approxima- violation, maximum acceptable, 19, 20 (also
tions). see Linear Feasibility Tolerance and Nonlin-

Hessian of Lagrangian function, 3, 4, 6, 19, 21. ear Feasibility Tolerance).
ASCII, 30. Cony (printout of convergence test status), 25.
Assignment of constant elements in Jacobian, 10. Convergence test, 21-22 (also see Optimality
Attainable accuracy, 18. conditions).
Angimented Lagrangian merit function, 4, 85, 20. Cost

printed value, 24. of automatic computation of finite-difference
AutOTmatic computation of finite-difference inter- intervals, 19.

vals, 18 -19. of unspecified objective gradient elements, 18.
of unspecified Jacobian elements, 18.

BAD?, 23. Crash Tolerance, 17, 18 (also see Cold Start).
Badly sealed problems, 19. Cray-1 and Cray-2, 30.
Begin (in options file), 15-16. Cyber, 30.
BF(;S quvi-iNewton update, 4, 6 (also see Ap-

proximate Hessian of Lagrangian function). d (search direction in QP method), 4-5.
BIGBND. 8. 19 -20, 26. Data General MV/8000, 30. -
BL. 7 8 (definition), 9, 26. DEC Systems 10 and 20, 30.
BLAS. 31. DEC VAX, 30.

Level 2, 31. Default values of optional parameters, checklist
.% Bnd, 3, 24. of, 23.

Bounds antl linear constraints, separate treat- Defaults (optional parameter), 16-17.
ment of, 3, 4, 6, 9, 17. Dependencies, constraint, resolution, 27, 28-29.

BU, 8 (definition), 9, 26. Derivative
Burroughs 6700 and 7700, 30. checking (see Verify).

finite-difference (see Finite-difference approoi-

c(z) (nonlinear constraints), 1, 3, 6. mations).
printout of, 21. specification (see Derivative Level).

C (predicted active set), 2, 3. Derivative Level, 3, 10, 12, 13, 14, 18, 35.
CFR, 2, 3, 5. Diagonals
C (array of nonlinear constraints), 10 (definition), of R, printout, 21.

13. of T, printout, 21.
C (printed indication of switch to central differ- Difference Interval, 4, 14, 18.

ences), 25. use in approximating unspecified gradients, 19.
CDC 6000 and 7000,-30. use in verification of gradients, 18.
Central Difference Interval, 17 (definition). Discontinuities, isolated, 1.
Central differences, switch to, 25. Distribution tape, format of, 30.
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Double precision Hessian, 10 (definition).
table of machine constants, 33. Hessian, transformed and reordered (see HQ).
version of code, 30. Hexagon example, 34.

DOUBLE, 7. Hitachi, 30.
Honeywell, 30.

E ffects of ill-conditioning, 27, 28-20 .
(n ouwe l at a Q.

End (in options file), 15 -16. 1 (printout indicating infeasible QP subproblem),
EPS, 32. 24, 25.

(machine precision), 17, 19, 32, 13. IBM
cl? (function precision), 17, 19, 21, 27. 360/370 and 3033/3081, 30.
EQ (printed constraint status), 25. VS Fortran, 31.
Equality constraint, 1, 8. ICL 2900 series, 30.
Errors in gradients, 29. Identity matrix, in resetting Hessian, 29.
Estimated Lagrange multiplier (see Lagrange Ill conditioning, effects of, 27, 28-29.

multiplier). Implementation information, 30-33.
Example problem for NPSOL, 34-35. Inaccuracies, effect of, 28.
External file, use for option specification, 15-16. Inaccurate linesearch, 20.

Inconsistent linear constraints, treatment, 28.
F(x) (objective function), 1. Incorrect gradients, 8, 28 (also see Verify).
Facom, 30. Inequality constraints (nonlinear), treatment in
Failure in linesearch, 28. merit function, 6.
Feasibility phase in QP method, 4, 5, 20. Infeasible problem

selection of initial working set, 9. in QP subproblem, 5, 9, 24, 25, 28.
Feasibility Tolerance, 19 (definition). for bounds and linear constraints, 4, 8, 28.
Finite-difference for nonlinear constraints, 8, 28.

approximations to gradients, 1, 3, 12. Infeasibilities, 4, 5, 24, 25.
checking of gradients (see Verify). Infinite Bound Size (BIGBND), 19 (definition).

, - intervals, automatic computation, 14, 19. Infinite lower or upper bound, 1, 8.
tradeoffs in computing, 18. Infinite Step Size, 20 (definition).

First-order Kuhn-Tucker conditions, 2, 8, 22, 27. INFORN, 8 (definition).
Fixed variable, 2, 4, 8. Initial working set in QP subproblem,

* Formal parameters of NPSOL, 7. with Cold Start, 9, 17-18.
Format of distribution tape, 30. with Warm Start, 9, 17.
Fortran 77, 1, 31. Input parameter, invalid, 8, 29.
Fortran subroutines, naming convention, 31-32. Installation procedure, 30.
FR (subscript), 3 (definition), 4 (also see Free Interpretation of results, 27-29.

variable). Invalid input parameter, 8, 29.
FR (printed constraints status), 25. IOPTNS (options file number), 15-16.
Free variable, 2, 3, 4. Isolated discontinuities, 1.
Fujitsu, 30. ISTATE, 0 (definition), 17.
Function precision (see eR). printout, 25, 26.
Function Precision, 17, 19 (definition), 27. ITER, 8 (definition).
FX (subscript), 3 (definition), 4. Iteration Limit, 20 (definition).

Iters, 20.
g(z) (objective gradient), 2. Itn (printed value), 24.

gFR, 2. Itna, 20.
Gabor, Zsa Zsa, 19. ItQP (printed value), 24.
Global convergence, 6. IW, 11 (definition).
Gradient

approximations (see Finite-difference approxi- Jacobian matrix (nonlinear constraints), 2, 3, 8,
mations). 10, 14.

constraint (see Jacobian matrix), assignment of constant elements, 10, 14.
of Lagrangian function, 6. specification by user (see CONFUN).
projected (see Projected gradient). unspecified elements, 18.

9 specification by user (see CONFUN and ODJFUN).
Kuhn-Tucker conditions, first-order, 2, 8, 22, 27.

H (approximate Hessian of Lagrangian function), Keyword in option specification, 15.
3, 6, 19, 25.

HQ, 4, 6, 19, 25. 1 (lower bound vector), 1, 3, 7-8 (also see BL).

H, 19. Lack of progress in major iteration, 28.
Hz, 25. Lagr multiplier (printed value), 26.
HDWIRE, 32. Lagrange multiplier, 2, 3, 6, 10, 26.
Hessian approximation (see Approximate Hessian of QP subproblem, 5, 21.

of Lagrangian function). optimal, 5.

-.
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A, 2, 6 (also see Lagrange multiplier). Naming convention, Fortran subroutines, 31-32.
LENIW, 11 (definition). Natural order of variables, 10.
LENW, 11 (detinition). NBASE, 32.
Level 2 BLAS, 31. NCLIN, 7 (definition) (also see mL).
Limiting accuracy, 18. NCNLN, 7 (definition), 13.
Lin, 3, 24. NDIGIT, 32.
Linear constr, '.6. NEEDC, 13.
Linear Feasibility Tolerance, 4, 9, 20 (defini- Nfun (printed value), 24.

tion). NIN, 32.
adjustment to avoid overflow, 27. NLCON, 26.

Linear least-squares code (see LSSOL). Nln (printed value), 3, 24.
SLines of code in NPSOL, 1, 30. No feasible point

Linesearch, 4, 0, 20 (also see Step length). for bounds and linear constraints, 4, 8, 28.
effect of accuracy, 20. for nonlinear constraints, 8, 28.
routines for, 32. in QP subproblem, 5, 9, 24, 25, 28.

Linesearch Tolerance, 20 (definition). No progress in lincsearch, 8, 28.
LL (printed constraint status), 25. No.List option, 16.
LNCON, 26. Non-existent lower or upper bound, 1, 8.
Local ninimum (see Optimality conditions). None (in printout), 26.
Lower bound (in printout), 26. NOUT, 32.
LSSOL, 1, 3, 4. Nonlinear Feasibility Tolerance, 9, 20 (defini-

tion), 21.
m (number of constraints in predicted active adjustment to avoid overflow, 27.

set), 3. Nonlinear constraints
m, (number of general linear constraints), 1. inequality, in merit function, 6.
mn (number of nonlinear constraints), 1. predicted active set, 3.
N (printed indicator of modified Hessian update), specification by user (see CONFUN).

6, 25, 28. violated, residuals of, 25.
Machine constants Nonlinear optimization, routines for, 32.

computation of, 32. Nonlnr constr, 26.
tables of, 33. Norm C, 25.

Machine precision (see c). Norm Gf, 3, 25.
Major iteration, 2. Norm Ci, 3, 25.
Major Iteration Limit, 8. 20 (definition), 28. NP (problem statement), 1, 2.
Major Print Level, 8, 11, 20 (definition), 24, 25. WPFILE, 15-16.
Maximum acceptable constraint violations (see NPOPTN, 16.

Linear Feasibility Tolerance and Nonlin- list, sample 16.
ear Feasibility Tolerance). NPSOL

MCHPAR, 32 (also see Machine constants). algorithm of, 2-6.
Merit function, 4, 6, 20, 24. lines of code, 1, 30.
Merit (printed value), 24. parameters of, 7-11.
Method specification, 7.

of NPSOL, description, 2-6. solving related problems, 17.
QP, 4-5. NROWA, 7 (definition).

Minimum abbreviation (of optional parameter), NROWJ, 7 (definition), 13.
15. NRO|W, 7 (definition).

Minimum sum of infeasibilities in QP, 5 (also see NSTATE, 12, 14.
Feasibility phase). Null space, 3.

Minor iteration (within QP method), 2, 3, 4-5. dimension of (see nz).
Minor Iteration Limit, 21 (definition). Nz, 24.
Minor Print Level, 21 (definition), 24.
MINOS, 1. Objective (printed value), 24.
MODE Objective function (F(z)), 1.

in CONFUN, 13. precision of (see cR).

in OBJFUN, 12. specification by user (see OBJFUN).
Modification of quasi-Newton update, 6, 25, 28. oJF, 10 (definition), 12.

JAN, 
6

. OBJFUN (user-provided subroutine)
Multiplier (see Lagrange multiplier), calls needed for unspecified gradient elements,

18.
n (number of variables), 1, 3 (also see I). definition as parameter of NPSOL, 8.
nFR (number of free variables), 2, 3. specification, 12-13.
nFX (number of fixed variables), 2 (also see Bnd). OBJCRD, 10 (definition), 12.
nz, 3, 24. OK, 23.
N, 7 (definition), 12, 13. Optimal
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Lagrange multiplier, 5. Rank-two modification (see Quasi-Newton up-
solution (see Optinality conditions). date).

Optimality REIL, 7.conditions, 2, 8, 21-22, 25, 27. Re-ordered Hessian (see Approximate Hessian of

phase, in QP method, 4, 5, 9, 21. Lagrangian function).
Optimality Tolerance, 20, 21-22 (definition), 25, References, 38.

27. Related problems, solved by NPSOL, 17.
Option-handling routines, 31. Resetting
Optional parameters, definition, 15-23. Hessian matrix, to overcome ill-conditioning,
Options file, 15-16. 29.

4 Ordering of variables, 10. optional parameters to defaults, 16-17.
Orthogonal transformation, 3. Residual (printed value), 26.
Output (see Printout). Residuals, constraint
Overflow, 27. allowed maximum at solution (see Linear Feam

sibility Tolerance and Nonlinear Feasi-

p (search direction in major iteration), 2, 4. bility Tolerance).
Parameters in optimality conditions, 22

of CONFUN, 13-14. Resolution of constraint dependencies, 27, 28-29.
.3 of NPSOL, 7-11. Reverse-triangular matrix, 3 (also see T).of 0BJFUN, 12-13. p (see Penalty parameters).

Penalty parameters (in merit function), 6, 25. 1*4IN, 32.
Penalty (printed value), 25. ItIN, 32.
Phase I (see Feasibility phase). ITEPS, 32.
Phase 2 (see Optimality phase). itTMIN, 32.
Phrase (to modify optional parameter), 15. TIN, 32.
Positive-definite Hessian approximation (see Ap- Scaling techniques, 19.

proximate Hessian of Lagrangian function). Search direction
Precision in major iteration, 2, 4.

function (see eR). in QP subproblem, 4-5.
machine (see e). Separate treatment of bounds and linear con-
of linear constraints, relation to Linear Feast- straints, 3, 4, 6, 9, 17.

bility Tolerance, 28. Sequential quadratic programming algorithm (see
Predicted active set (see Active constraints and SQP algorithm).

* Working set). a (step length in QP method), 5.
Preloading constant Jacobian elements, 10, 14. Single precision
Primal method (for QP), 4. table of machine constants, 33.
Prime Systems, 30. version of code, 30.
Print Level, 20 (definition). Singularities in objective function, 27.
Printout Slack variables in merit function, 6.

control of, 20-21. Source files, list, 30.
description, 24-26. Sparse problems, 1.

Programming errors, symptoms, 29. Specification
Projected gradient of CONFUN, 13-14.

of nonlinear objective, 2, 3, 8, 21-22, 25. of NPSOL, 7.
of QP subproblem, 5. of OBJFUN, 12-13.

SQP algorithm, 2-4, 6.
Q, 3, 6. Start Constraint Check, 22 (definition).
QFR, 3, 5. Start Objective Check, 22 (definition).
Quadratic program State (printed value), 25.

iietbod of LSSOL, 4-5. Status of constraints (see ISTATE).
S -multipliers, 3, 5, 6. Step (printed value), 24.

subproblem, 2, 4-5. Step length
Qualifying phrase (in optional parameter), 15. in major iteration (a), 2, 4, 6, 22, 24.
Quasi-Newton in QP method (a), 5.

approximation (see Approximate Hessian of Stop Constraint Check, 22 (definition).
Lagrangian function). Stop Objective Check, 22 (definition).

update, 4, 6. Sufficient decrease (see Step length).
" QPSOL, 1. Sum of infeasibilities

in QP, 4, 5.
R, 3 of nonlinear constraints, 22, 25.
Rz, 5, 25. Synonyms (for optional parameters), 15.

% It , 10 (definition), 19, 21.
So Rank-one update to R, 6. T, 3, 5, 21, 25.

i!
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Tape +* (printed constraint status), 25 (almo me Infea-

characteristics, 30. sible problem).
format, 30.

Termination
criteria, 8, 20 (also see Optimality conditions).
user-controlled, 8 (see MODE).

TQ factorization, 3, 5.
Transformed and re-ordered Hessian (see Ap-

proximate Hessian of Lagrangian function).
Two-phase primal method for QP, 4.

u (vector of upper bounds), 1, 3, 8 (also see 3O).
UL (printed constraint status), 25.
Unbounded objective function, 20.

Underflow, 27.
Univac 1100, 30.
Unspecified derivatives, 1, 18.
Update

of Hessian approximation (see Quasi-Newton
update).

of working set in QP method, 5.
Updating matrix factorizations, routines for, 31.
Upper bound (in printout), 26.
Upper-triangular matrix (see Cholesky factor).
User-reqiested termination (see MODE).

-- User-supplied subroutines, 12-14.

Valid option strings, examples of, 15.
Value (printed value), 26.

VIRBL, 25.
Variable, 25.
Verification of gradients, 4, 18, 22-23, 29.

" "Verify, 4, 12, 22 (definition).
Verify Level, 22 (definition).
Vertex, 5.
Violations, constraint (see Infeasibilities).

V, 11 (definition).
Warm start, example of, 35
Warm Start, 9, 10, 17 (definition).
We1 scaled problems, 19.
WMACH, 32 (also see Machine constants).
Working precision (see e).
Working set, 3, 4, 9.

changes in, 5.
initial, in QP, 17-18.
Condition estimate (see Cond T).

Workspace parameters, 11.

z (vector of unknowns), 1, 2.
printout, 25.

X, 11 (definition), 12, 13.
C (Lagrange multipliers for active bounds), 2.
X * (solution of NP), 2, 3.

Y, 3.

gZbasis for null space), 2, 5, 24.
Z FR, 2, 3.
Zero Jacobian elements, 14.

' - - (printed constraint status), 25 (also see Infea.
- . sible problem).
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